Reputation: 2060
Goal is to feed large datasets to Tensorflow. I came to the following implementation. However, while io of HDF5 is supposed to be very fast my implementation is slow. Is this due to not using the chunks function? I do not seem to get the dimensions right for the chunks, should I see this as a third dimension. Like; (4096, 7, 1000) for chunksize 1000?
Please note, I could have simplified my code below more by finding solution for a single generator. However, I think the data/label combination is very common and usefull for others.
I use the following function to create two generators, one for the data and one for the corresponding labels.
def read_chunks(file, dim, batch_size=batch_size):
chunk = np.empty(dim,)
current_size = 1
# read input file line by line
for line in file:
current_size += 1
# build chunk
chunk = np.vstack((chunk, np.genfromtxt(io.BytesIO(line.encode()))))
# reaches batch size
if current_size == batch_size:
yield chunk
# reset counters
current_size = 1
chunk = np.empty(dim,)
Then I wish move the data and labels produced by these generators to HDF5.
def write_h5(data_gen, label_gen, out_file, batch_size, h5_batch_size, data_dtype, label_dtype):
# remove existing file
if os.path.isfile(out_file):
os.remove(out_file)
with h5py.File(out_file, 'a') as f:
# create a dataset and labelset in the same file
d = f.create_dataset('data', (batch_size,data_dim), maxshape=(None,data_dim), dtype=data_dtype)
l = f.create_dataset('label', (batch_size,label_dim), maxshape=(None,label_dim), dtype=label_dtype)
# use generators to fill both sets
for data in data_gen:
d.resize(d.shape[0]+batch_size, axis=0)
d[-batch_size:] = data
l.resize(l.shape[0]+batch_size, axis=0)
l[-batch_size:] = next(label_gen)
With the following constants I combined both functions like so;
batch_size = 4096
h5_batch_size = 1000
data_dim = 7 #[NUM_POINT, 9]
label_dim = 1 #[NUM_POINT]
data_dtype = 'float32'
label_dtype = 'uint8'
for data_file, label_file in data_label_files:
print(data_file)
with open(data_file, 'r') as data_f, open(label_file, 'r') as label_f:
data_gen = read_chunks(data_f, dim=data_dim)
label_gen = read_chunks(label_f, dim=label_dim)
out_file = data_file[:-4] + '.h5'
write_h5(data_gen, label_gen, out_file, batch_size, h5_batch_size, data_dtype, label_dtype)
Upvotes: 0
Views: 1053
Reputation: 249464
The problem is not that HDF5 is slow. The problem is that you are reading a single line at a time using a Python loop, calling genfromtxt()
once per line! That function is meant to read entire files. And then you use the anti-pattern of "array = vstack(array, newstuff)` in the same loop.
In short, your performance problem starts here:
chunk = np.vstack((chunk, np.genfromtxt(io.BytesIO(line.encode()))))
You should just read the entire file at once. If you can't do that, read half of it (you can set a max number of lines to read each time, such as 1 million).
Upvotes: 3