Reputation: 109
Spark version: 1.6.1, I use pyspark API.
DataFrame: df, which has two colume.
I have tried:
1: df.write.format('csv').save("hdfs://path/bdt_sum_vol.csv")
2: df.write.save('hdfs://path/bdt_sum_vol.csv', format='csv', mode='append')
3: df.coalesce(1).write.format('com.databricks.spark.csv').options(header='true').save('hdfs://path/')
4: df.write.format('com.databricks.spark.csv').save('hdfs://path/df.csv')
(All above didn't work, Failed to find data source)
or:
def toCSVLine(data):
return ','.join(str(d) for d in data)
lines = df.rdd.map(toCSVLine)
lines.saveAsTextFile('hdfs://path/df.csv')
(Permission denied)
Q:
1, How to solve "Failed to find data source"?
2, I used sudo to make the dictionary "/path" on hdfs, if I turn the dataframe to rdd, how to write the rdd to csv on hdfs?
Thanks a lot!
Upvotes: 6
Views: 20753
Reputation: 491
If hdfs://yourpath/
doesn't work
Try this, In my case it worked:
df.coalesce(1).write.format('com.databricks.spark.csv').options(header='true').save("/user/user_name/file_name")
So technically we are using a single reducer if there are multiple partitions by default for this data frame. And you will get one CSV in your hdfs location.
Upvotes: 1
Reputation: 99
You could try to change ".save" to ".csv":
df.coalesce(1).write.mode('overwrite').option('header','true').csv('hdfs://path/df.csv')
Upvotes: 2