Reputation: 575
I am trying to delete specific rows in my dataset based on values in multiple columns. A row should be deleted only when a condition in all 3 columns is met.
This is my code:
test_dff %>%
filter(contbr_nm != c('GAITHER, BARBARA', 'PANIC, RADIVOJE', 'KHAN, RAMYA') &
contbr_city != c('APO AE', 'PORSGRUNN', 'NEW YORK') &
contbr_zip != c('9309', '3924', '2586'))
This code should remove 12 rows in my table. Instead it removes a vast majority of them. I am suspecting, that it removes all the possible rows, whenever one of the conditions is met.
Is there a better solution, or do I have to use the approach, described here?
Do I need to specify each combination separately? Like so? This approach also deletes far too many rows, so it is also wrong.
test_dff %>%
filter((contbr_nm != 'GAITHER, BARBARA' & contbr_city != 'APO AE' & contbr_zip != '9309') &
(contbr_nm != 'PANIC, RADIVOJE' & contbr_city != 'PORSGRUNN' & contbr_zip != '3924') &
(contbr_nm != 'KHAN, RAMYA' & contbr_city != 'NEW YORK' & contbr_zip != '2586') )
If I focus on deleting rows only based on one variable, this piece of code works:
test_dff %>%
filter(contbr_zip != c('9309')) %>%
filter(contbr_zip != c('3924')) %>%
filter(contbr_zip != c('2586'))
Why does such an approach not work?
test_dff %>%
filter(contbr_zip != c('9309','3924','2586'))
Thanks a lot for your help.
Upvotes: 22
Views: 95009
Reputation: 21
Here's an approach that creates a new variable by concatenating the values in the multiple columns you want to reference with your filter:
set.seed(15)
dfTest <- data.frame(matrix(round(rnorm(20),3), nrow=10))
dfTest$tempcol <- paste(dfTest$X1,dfTest$X2)
head(dfTest)
X1 X2 tempcol
1 0.259 0.855 0.259 0.855
2 1.831 -0.365 1.831 -0.365
3 -0.340 0.166 -0.34 0.166
4 0.897 -1.243 0.897 -1.243
5 0.488 1.459 0.488 1.459
6 -1.255 -0.004 -1.255 -0.004
#Now remove the values by filtering on tempcol
dfTest %>%
filter(tempcol != '0.259 0.855') %>%
select(1:2) #omit tempcol in output
X1 X2
1 1.831 -0.365
2 -0.340 0.166
3 0.897 -1.243
4 0.488 1.459
5 -1.255 -0.004
6 0.023 -0.021
7 1.091 0.032
8 -0.132 -1.167
9 -1.075 -0.520
Upvotes: 2
Reputation: 4378
Adjusting your second question (not tested)
test_dff %>%
filter(!((contbr_nm == 'GAITHER, BARBARA' & contbr_city == 'APO AE' & contbr_zip == '9309') |
(contbr_nm == 'PANIC, RADIVOJE' & contbr_city == 'PORSGRUNN' & contbr_zip == '3924') |
(contbr_nm == 'KHAN, RAMYA' & contbr_city == 'NEW YORK' & contbr_zip == '2586') ))
Upvotes: 22
Reputation: 4378
Here is a join-based approach - all items must be exact matches.
main <- read.csv(text = "
id,name,city,zip
1,mary,new york,10017
2,jonah,new york,10016
3,tamil,manhattan,10019
4,vijay,harlem,10028
")
excludes <- read.csv(text = "
name,city,zip
jonah,new york,10016
vijay,harlem,10028
")
library(dplyr)
anti_join(main, excludes)
# id name city zip
# 1 3 tamil manhattan 10019
# 2 1 mary new york 10017
Upvotes: 12