Reputation: 399
I have two dataframes and I want to update the first one. df1 contains different Markets (M1, M2, etc.) and some Codes for each of them (numbers or Dummy)
import pandas as pd
labels = ["Market","Code"]
values = [["M1","1234"],["M1","Dummy"],["M1","1234"],["M2","Dummy"],["M1","1234"]]
df = pd.DataFrame.from_records(values,columns=labels)
print(df)
Market Code
0 M1 1234
1 M1 Dummy
2 M1 1234
3 M2 Dummy
4 M1 1234
If Code == Dummy, then I want to update the Code in df based on the value in df2 for this specific market. So each Market should receive a different new Code.
labels = ["Market","Code(New)"]
values = [["M1","4567"],["M2","5678"]]
df2 = pd.DataFrame.from_records(values,columns=labels)
print(df2)
Market Code(New)
0 M1 4567
1 M2 5678
in the end I should get
labels = ["Market","Code"]
values = [["M1","1234"],["M1","4567"],["M1","1234"],["M2","5678"],["M1","1234"]]
df_clean = pd.DataFrame.from_records(values,columns=labels)
print(df_clean)
Market Code
0 M1 1234
1 M1 4567
2 M1 1234
3 M2 5678
4 M1 1234
Upvotes: 2
Views: 5325
Reputation: 76917
Use .merge
on Market
and .loc
for subset of df.Code == 'Dummy'
values
In [288]: df.loc[df.Code=='Dummy', 'Code'] = df.merge(df2, on='Market', how='left')['Code(New)']
In [289]: df
Out[289]:
Market Code
0 M1 1234
1 M1 4567
2 M1 1234
3 M2 5678
4 M1 1234
Upvotes: 4
Reputation: 323226
Base on your example
pd.concat([df1[df1.Code!='Dummy'],df2],axis=0)
You edited your input after I posted my answer, below is the solution with the updated input .
df2.columns=["Market","Code"]
df2.index=df[df.Code=='Dummy'].index
pd.concat([df[df.Code!='Dummy'],df2],axis=0).sort_index()
Out[372]:
Market Code
0 M1 1234
1 M1 4567
2 M1 1234
3 M2 5678
4 M1 1234
Upvotes: 2