Reputation: 621
I'd like to use a specific UDF
with using Spark
Here's the plan:
I have a table A
(10 million rows) and a table B
(15 millions rows)
I'd like to use an UDF
comparing one element of the table A
and one of the table B
Is it possible
Here's a a sample of my code. At some point i also need to say that my UDF
compare must be greater than 0,9
:
DataFrame dfr = df
.select("name", "firstname", "adress1", "city1","compare(adress1,adress2)")
.join(dfa,df.col("adress1").equalTo(dfa.col("adress2"))
.and((df.col("city1").equalTo(dfa.col("city2"))
...;
Is it possible ?
Upvotes: 10
Views: 8224
Reputation: 16086
Yes, you can. However it will be slower than normal operators, as Spark will be not able to do predicate pushdown
Example:
val udf = udf((x : String, y : String) => { here compute similarity; });
val df3 = df1.join(df2, udf(df1.field1, df2.field1) > 0.9)
For example:
val df1 = Seq (1, 2, 3, 4).toDF("x")
val df2 = Seq(1, 3, 7, 11).toDF("q")
val udf = org.apache.spark.sql.functions.udf((x : Int, q : Int) => { Math.abs(x - q); });
val df3 = df1.join(df2, udf(df1("x"), df2("q")) > 1)
You can also directly return boolean from User Defined Function
Upvotes: 7