Reputation: 3851
I'm trying to implement the CNN model in this article (https://arxiv.org/abs/1605.07333)
Here, they have two different contexts as inputs which are processed by two independent conv and max-pooling layers. After pooling they concat the results.
Assuming each CNN is modelled as such, how do I achieve the model above?
def baseline_cnn(activation='relu'):
model = Sequential()
model.add(Embedding(SAMPLE_SIZE, EMBEDDING_DIMS, input_length=MAX_SMI_LEN))
model.add(Dropout(0.2))
model.add(Conv1D(NUM_FILTERS, FILTER_LENGTH, padding='valid', activation=activation, strides=1))
model.add(GlobalMaxPooling1D())
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
Thanks in advance!
Final Code: I simply used @FernandoOrtega's solution:
def build_combined(FLAGS, NUM_FILTERS, FILTER_LENGTH1, FILTER_LENGTH2):
Dinput = Input(shape=(FLAGS.max_dlen, FLAGS.dset_size))
Tinput = Input(shape=(FLAGS.max_tlen, FLAGS.tset_size))
encode_d= Conv1D(filters=NUM_FILTERS, kernel_size=FILTER_LENGTH1, activation='relu', padding='valid', strides=1)(Dinput)
encode_d = Conv1D(filters=NUM_FILTERS*2, kernel_size=FILTER_LENGTH1, activation='relu', padding='valid', strides=1)(encode_d)
encode_d = GlobalMaxPooling1D()(encode_d)
encode_tt = Conv1D(filters=NUM_FILTERS, kernel_size=FILTER_LENGTH2, activation='relu', padding='valid', strides=1)(Tinput)
encode_tt = Conv1D(filters=NUM_FILTERS*2, kernel_size=FILTER_LENGTH1, activation='relu', padding='valid', strides=1)(encode_tt)
encode_tt = GlobalMaxPooling1D()(encode_tt)
encode_combined = keras.layers.concatenate([encode_d, encode_tt])
# Fully connected
FC1 = Dense(1024, activation='relu')(encode_combined)
FC2 = Dropout(0.1)(FC1)
FC2 = Dense(512, activation='relu')(FC2)
predictions = Dense(1, kernel_initializer='normal')(FC2)
combinedModel = Model(inputs=[Dinput, Tinput], outputs=[predictions])
combinedModel.compile(optimizer='adam', loss='mean_squared_error', metrics=[accuracy])
print(combinedModel.summary())
return combinedModel
Upvotes: 4
Views: 12341
Reputation: 735
If you want to concatenate two sub-networks you should use keras.layer.concatenate function.
Furthermore, I recommend you shoud use Functional API as long as it easiest to devise complex networks like yours. For instance:
def baseline_cnn(activation='relu')
# Defining input 1
input1 = Embedding(SAMPLE_SIZE, EMBEDDING_DIMS, input_length=MAX_SMI_LEN)
x1 = Dropout(0.2)(input)
x1 = Conv1D(NUM_FILTERS, FILTER_LENGTH, padding='valid', activation=activation, strides=1)(x1)
x1 = GlobalMaxPooling1D()(x1)
# Defining input 2
input2 = Embedding(SAMPLE_SIZE, EMBEDDING_DIMS, input_length=MAX_SMI_LEN)
x2 = Dropout(0.2)(input)
x2 = Conv1D(NUM_FILTERS, FILTER_LENGTH, padding='valid', activation=activation, strides=1)(x2)
x2 = GlobalMaxPooling1D()(x2)
# Merging subnetworks
x = concatenate([input1, input2])
# Final Dense layer and compilation
x = Dense(1, activation='sigmoid')
model = Model(inputs=[input1, input2], x)
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
After compile this model, you can fit/evaluate it by means of model.fit([data_split1, data_split2])
in which data_split1
and data_split2
are your different contexts as input.
More info about multi input in Keras documentation: Multi-input and multi-output models.
Upvotes: 3