Reputation: 63
I have a Data Frame with 15 columns suppose out of which i want only 6. I am performing aggregate and then group by but it is throwing error.
def my_compute_function(my_input):
df = pd.DataFrame(my_input)
df2 = df[(df['D'] == "Validated")]
df2[['A','E','F']] = df2[['A','E','F']].apply(pd.to_numeric)
df3=df2[['A','B','C','D','E','F']].groupby(['B','C','D']).agg({'A':
'max','E': 'max','F': 'max'}).reset_index()
return df3
So i want only 6 columns A,B,C,D,E,F.
When i am adding this line
df2[['A','E','F']]=df2[['A','E','F']].apply(pd.to_numeric)
it is throwing error that ValueError: can not infer schema from empty dataset
.
Upvotes: 1
Views: 157
Reputation: 862481
For me it working perfectly, only .copy
is necessary:
df = pd.DataFrame({
'D':['Validated','Validated','a'],
'E':['4','8','8'],
'A':['4','5','8'],
'F':['4','9','8'],
'B':['a','a','r'],
'C':['b','b','b']})
df2=df[(df['D'] == "Validated")].copy()
print (df2)
A B C D E F
0 4 a b Validated 4 4
1 5 a b Validated 8 9
#for replace ',' to '.'
df2[['A','E','F']]=df2[['A','E','F']].replace(',','.', regex=True).apply(pd.to_numeric)
df3=df2.groupby(['B','C','D']).agg({'A':'max','E': 'max','F': 'max'}).reset_index()
print (df3)
B C D A F E
0 a b Validated 5 9 8
Upvotes: 1