Reputation: 21111
I have a recursive data structure that can contain a few different type of data:
type Data interface{
// Some methods
}
type Pair struct { // implements Data
fst Data
snd Data
}
type Number float64 // implements Data
Now I want to flatten a chain of Pair
s into a []Data
. However, the Data
in the fst
field should not be flattened, only data in snd
should be flattened. E.g:
chain := Pair{Number(1.0), Pair{Number(2.0), Pair{Number(3.0), nil}}}
chain2 := Pair{Pair{Number(1.0), Number(4.0)}, Pair{Number(2.0), Pair{Number(3.0), nil}}}
becomes:
data := []Data{Number(1.0), Number(2.0), Number(3.0)}
data2 := []Data{Pair{Number(1.0), Number(4.0)}, Number(2.0), Number(3.0)}
My naive approach would be:
var data []Data
chain := Pair{Number(1.0), Pair{Number(2.0), Pair{Number(3.0), nil}}}
for chain != nil {
data = append(data, chain.fst)
chain = chain.snd
}
Is there a more efficient approach that can flatten a data structure like the one in the variable chain
into an []Data
array?
Upvotes: 4
Views: 3325
Reputation: 13523
As suggested, writing a recursive function fits best for this problem. But it's also possible to write a non-recursive version (IMHO recursive version would be more clear):
func flatten(d Data) []Data {
var res []Data
stack := []Data{d}
for {
if len(stack) == 0 {
break
}
switch x := stack[len(stack)-1].(type) {
case Pair:
stack[len(stack)-1] = x.snd
stack = append(stack, x.fst)
case Number:
res = append(res, x)
stack = stack[:len(stack)-1]
default:
if x == nil {
stack = stack[:len(stack)-1]
} else {
panic("INVALID TYPE")
}
}
}
return res
}
Upvotes: 0
Reputation: 21223
Huh, your naive approach doesn't work for Pair
s nested inside fst
. If you had chain := Pair{Pair{Number(1.0), Number(2.0)}, Number{3.0}}
, it would end up as []Data{Pair{Number(1.0), Number(2.0)}, Number{3.0}}
. This is an inherently recursive problem, so why not implement it as such?
I suggest adding a flatten()
method to your interface. Pair
s can just recursively nest themselves, and Number
s just return their value.
Here's a fully working example with some minimal testing:
package main
import "fmt"
type Data interface {
flatten() []Data
}
type Pair struct {
fst Data
snd Data
}
type Number float64
func (p Pair) flatten() []Data {
res := []Data{}
if p.fst != nil {
res = append(res, p.fst.flatten()...)
}
if p.snd != nil {
res = append(res, p.snd.flatten()...)
}
return res
}
func (n Number) flatten() []Data {
return []Data{n}
}
func main() {
tests := []Data{
Pair{Number(1.0), Pair{Number(2.0), Pair{Number(3.0), nil}}},
Pair{Pair{Number(1.0), Number(2.0)}, Number(3.0)},
Pair{Pair{Pair{Number(1.0), Number(2.0)}, Pair{Number(3.0), Number(4.0)}}, Pair{Pair{Number(5.0), Number(6.0)}, Number(7.0)}},
Number(1.0),
}
for _, t := range tests {
fmt.Printf("Original: %v\n", t)
fmt.Printf("Flattened: %v\n", t.flatten())
}
}
(This assumes that the top-level input Data
is never nil
).
The code prints:
Original: {1 {2 {3 <nil>}}}
Flattened: [1 2 3]
Original: {{1 2} 3}
Flattened: [1 2 3]
Original: {{{1 2} {3 4}} {{5 6} 7}}
Flattened: [1 2 3 4 5 6 7]
Original: 1
Flattened: [1]
Upvotes: 0
Reputation: 13170
You can use a recursive function. On the way down, add up the number of pairs, at the bottom, allocate the array, and on the way back up, fill the array from back to front.
If you need to support arbitrary trees, you can add a size
method to Data
, and then do another tree traversal to actually fill the array.
Upvotes: 2