Reputation: 3660
If I have a table like this:
df = pd.DataFrame({
'hID': [101, 102, 103, 101, 102, 104, 105, 101],
'dID': [10, 11, 12, 10, 11, 10, 12, 10],
'uID': ['James', 'Henry', 'Abe', 'James', 'Henry', 'Brian', 'Claude', 'James'],
'mID': ['A', 'B', 'A', 'B', 'A', 'A', 'A', 'C']
})
I can do count(distinct hID)
in Qlik to come up with count of 5 for unique hID. How do I do that in python using a pandas dataframe? Or maybe a numpy array? Similarly, if were to do count(hID)
I will get 8 in Qlik. What is the equivalent way to do it in pandas?
Upvotes: 276
Views: 692174
Reputation: 181
For unique count of your rows without duplications
df['hID'].nunique()
To know the number of each unique row content duplicated
df['hID'].value_counts()
Upvotes: 18
Reputation: 27
I was looking for something similar and I found another way you may help you
def count_nulls(s):
return s.size - s.count()
def unique_nan(s):
return s.nunique(dropna=False)
from scipy.stats import mode
agg_func_custom_count = {
'embark_town': ['count', 'nunique', 'size', unique_nan, count_nulls, set]
}
df.groupby(['deck']).agg(agg_func_custom_count)
You can find more info Here
Upvotes: 1
Reputation: 153460
Count distinct values, use nunique
:
df['hID'].nunique()
5
Count only non-null values, use count
:
df['hID'].count()
8
Count total values including null values, use the size
attribute:
df['hID'].size
8
Use boolean indexing:
df.loc[df['mID']=='A','hID'].agg(['nunique','count','size'])
OR using query
:
df.query('mID == "A"')['hID'].agg(['nunique','count','size'])
Output:
nunique 5
count 5
size 5
Name: hID, dtype: int64
Upvotes: 416
Reputation: 31
To count unique values in column, say hID
of dataframe df
, use:
len(df.hID.unique())
Upvotes: 3
Reputation: 19
you can use unique property by using len function
len(df['hID'].unique()) 5
Upvotes: -4
Reputation: 294278
Or get the number of unique values for each column:
df.nunique()
dID 3
hID 5
mID 3
uID 5
dtype: int64
New in pandas 0.20.0
pd.DataFrame.agg
df.agg(['count', 'size', 'nunique'])
dID hID mID uID
count 8 8 8 8
size 8 8 8 8
nunique 3 5 3 5
You've always been able to do an agg
within a groupby
. I used stack
at the end because I like the presentation better.
df.groupby('mID').agg(['count', 'size', 'nunique']).stack()
dID hID uID
mID
A count 5 5 5
size 5 5 5
nunique 3 5 5
B count 2 2 2
size 2 2 2
nunique 2 2 2
C count 1 1 1
size 1 1 1
nunique 1 1 1
Upvotes: 55
Reputation: 2411
If I assume data is the name of your dataframe, you can do :
data['race'].value_counts()
this will show you the distinct element and their number of occurence.
Upvotes: 225