Reputation: 578
I'm attempting to read IR information from a NodeMCU running Lua 5.1.4 from a master build as of 8/19/2017.
I might be misunderstanding how GPIO works and I'm having a hard time finding examples that relate to what I'm doing.
pin = 4
pulse_prev_time = 0
irCallback = nil
function trgPulse(level, now)
gpio.trig(pin, level == gpio.HIGH and "down" or "up", trgPulse)
duration = now - pulse_prev_time
print(level, duration)
pulse_prev_time = now
end
function init(callback)
irCallback = callback
gpio.mode(pin, gpio.INT)
gpio.trig(pin, 'down', trgPulse)
end
-- example
print("Monitoring IR")
init(function (code)
print("omg i got something", code)
end)
I'm triggering the initial interrupt on low, and then alternating from low to high in trgPulse
. In doing so I'd expect the levels to alternate from 1 to 0 in a perfect pattern. But the output shows otherwise:
1 519855430
1 1197
0 609
0 4192
0 2994
1 589
1 2994
1 1198
1 3593
0 4201
1 23357
0 608
0 5390
1 1188
1 4191
1 1198
0 3601
0 3594
1 25147
0 608
1 4781
0 2405
1 3584
0 4799
0 1798
1 1188
1 2994
So I'm clearly doing something wrong or fundamentally don't understand how GPIO works. If this is expected, why are the interrupts being called multiple times if the low/high levels didn't change? And if this does seem wrong, any ideas how to fix it?
Upvotes: 0
Views: 1023
Reputation: 23535
I'm clearly doing something wrong or fundamentally don't understand how GPIO works
I suspect it's a bit a combination of both - the latter may be the cause for the former.
My explanation may not be 100% correct from a mechanical/electronic perspective (not my world) but it should be enough as far as writing software for GPIO goes. Switches tend to bounce between 0 and 1 until they eventually settle for one. A good article to read up on this is https://www.allaboutcircuits.com/technical-articles/switch-bounce-how-to-deal-with-it/. The effect can be addressed with hardware and/or software.
Doing it with software usually involves introducing some form of delay to skip the bouncing signals as you're only interested in the "settled state". I documented the NodeMCU Lua function I use for that at https://gist.github.com/marcelstoer/59563e791effa4acb65f
-- inspired by https://github.com/hackhitchin/esp8266-co-uk/blob/master/tutorials/introduction-to-gpio-api.md
-- and http://www.esp8266.com/viewtopic.php?f=24&t=4833&start=5#p29127
local pin = 4 --> GPIO2
function debounce (func)
local last = 0
local delay = 50000 -- 50ms * 1000 as tmr.now() has μs resolution
return function (...)
local now = tmr.now()
local delta = now - last
if delta < 0 then delta = delta + 2147483647 end; -- proposed because of delta rolling over, https://github.com/hackhitchin/esp8266-co-uk/issues/2
if delta < delay then return end;
last = now
return func(...)
end
end
function onChange ()
print('The pin value has changed to '..gpio.read(pin))
end
gpio.mode(pin, gpio.INT, gpio.PULLUP) -- see https://github.com/hackhitchin/esp8266-co-uk/pull/1
gpio.trig(pin, 'both', debounce(onChange))
Note: delay
is an empiric value specific to the sensor/switch!
Upvotes: 0