SheCodes
SheCodes

Reputation: 595

spark dataframe to pairedRDD in Scala

I am new to Spark and I want to convert dataframe to pairedRDD. My DataFrame looks like:

tagname,value,Minute
tag1,13.87,5
tag2,32.50,10
tag3,35.00,5
tag1,10.98,2
tag5,11.0,5

I want PairedRDD(tagname, value). I tried

val byKey:Map[String,Long] = winowFiveRDD.map({case (tagname,value) => (tagname)->value})

I am getting the following error:

error: constructor cannot be instantiated to expected type

Help is much appreciated. Thanks in Advance.

Upvotes: 0

Views: 126

Answers (3)

Alper t. Turker
Alper t. Turker

Reputation: 35219

I'd use Dataset.as:

import org.apache.spark.rdd.RDD

val df = Seq(
  ("tag1", "13.87", "5"), ("tag2", "32.50", "10"), ("tag3", "35.00", "5"), 
  ("tag1", "10.98", "2"), ("tag5", "11.0", "5")
).toDF("tagname", "value", "minute")

val pairedRDD: RDD[(String, Double)] = df
  .select($"tagname", $"value".cast("double"))
  .as[(String, Double)].rdd

Upvotes: 1

Robin
Robin

Reputation: 695

From the RDD.SCALA, the map returns the MapPartitionsRDD. You can not cat it to a map directly. Just remove the "Map[String,Long] " is OK.

Upvotes: 0

philantrovert
philantrovert

Reputation: 10082

org.apache.spark.sql.Row has custom get methods for certain datatypes.

val df = sc.parallelize(List(
("tag1",13.87,5),
("tag2",32.50,10),
("tag3",35.00,5),
("tag1",10.98,2),
("tag5",11.0,5)
)).toDF("tagname", "value", "minute")

val pairedRDD = df.map(x => (x.getString(0), x.getDouble(1) ) )

pairedRDD.collect

Array[(String, Double)] = Array((tag1,13.87), (tag2,32.5), (tag3,35.0), (tag1,10.98), (tag5,11.0))

You can then call pairedRDD.collect.toMap to convert it to a Scala Map. You have two keys called tag1 in the question, which is incorrect.

Upvotes: 1

Related Questions