Reputation: 35
I'm new at using tensorflow and have some struggle dealing with it. I try to run a simple classification work using the softmax model similar the MNIS example.
I tried creating batches of my data and put dem into the run method. My first approach was using
sess.run(train_step, feed_dict={x: feature_batch, y_: labels_batch})
which led to the error that tensors can't be put to feed_dict.
After some research, I found that I should use.
feat, lab = sess.run([feature_batch, feature_batch])
sess.run(train_step, feed_dict={x: feat, y_: lab})
After trying it my script won't terminate calculation but does also not print any error.
Has anyone some hints why it is not working?
The hole file looks like:
def input_pipeline(filename='dataset.csv', batch_size=30, num_epochs=None):
filename_queue = tf.train.string_input_producer([filename], num_epochs=num_epochs, shuffle=True)
features, labels = read_from_cvs(filename_queue)
min_after_dequeue = 10000
capacity = min_after_dequeue + 3 * batch_size
feature_batch, label_batch = tf.train.shuffle_batch(
[features, labels], batch_size=batch_size, capacity=capacity,
min_after_dequeue=min_after_dequeue)
return feature_batch, label_batch
def tensorflow():
x = tf.placeholder(tf.float32, [None, num_attributes])
W = tf.Variable(tf.zeros([num_attributes, num_types]))
b = tf.Variable(tf.zeros([num_types]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
y_ = tf.placeholder(tf.float32, [None, num_types])
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
feature_batch, label_batch = input_pipeline()
for _ in range(1200):
feat, lab = sess.run([feature_batch, feature_batch])
sess.run(train_step, feed_dict={x: feat, y_: lab})
coord.request_stop()
coord.join(threads)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
#print(sess.run(accuracy, feed_dict={x: feature_batch, y_: label_batch}))
Upvotes: 1
Views: 167
Reputation: 126184
I suspect the problem is the order of these two lines:
threads = tf.train.start_queue_runners(coord=coord)
feature_batch, label_batch = input_pipeline()
The call to tf.train.start_queue_runners()
will start background threads for all input pipeline stages that have been defined up to that point. The call to input_pipeline()
creates two new input pipeline stages (in the calls to tf.train.string_input_producer()
and tf.train.shuffle_batch()
). This means that the background threads for the two new stages will not be started, and the program will hang.
The solution is to reverse the order of these lines:
feature_batch, label_batch = input_pipeline()
threads = tf.train.start_queue_runners(coord=coord)
Upvotes: 2
Reputation: 20264
You can directly use tensors in your model definition. For example:
def tensorflow():
x, y_ = input_pipeline()
W = tf.Variable(tf.zeros([num_attributes, num_types]))
b = tf.Variable(tf.zeros([num_types]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for _ in range(1200):
sess.run(train_step)
Or you should use placeholder in tf.train.shuffle_batch
. For example:
#...omit
features_placeholder = tf.placeholder(...)
labels_placeholder = tf.placeholder(...)
x, y_ = tf.train.shuffle_batch(
[features_placeholder, labels_placeholder], batch_size=batch_size, capacity=capacity,
min_after_dequeue=min_after_dequeue)
W = tf.Variable(tf.zeros([num_attributes, num_types]))
b = tf.Variable(tf.zeros([num_types]))
#...omit
for _ in range(1200):
sess.run(train_step, feed_dict={features_placeholder: ..., labels_placeholder: ...})
Upvotes: 2