Reputation: 6778
I have a pandas dataframe that looks like the following:
df = pd.DataFrame([['joe', 21, 'M'],
['jane', 22, 'F'],
['Alice', 34, 'F']],
columns=['name', 'age', 'sex'])
Which looks like this:
name age sex
0 joe 21 M
1 jane 22 F
2 Alice 34 F
This dataframe is obviously a 3x3 matrix, and what I'd like to end up with a 1x9 matrix that looks like the following:
name_1 age_1 sex_1 name_2 age_2 sex_2 name_3 age_3 sex_3
0 joe 21 M jane 22 F Alice 34 F
I can't use 'pivot' because I don't have one column to use as columns and another to use as values. I simply want to move all of my rows so that they are side-by-side and I can't seem to wrap my head around how to do this in a pythonic way. Do I need to just loop through the rows, append the row to a list, turn the list into a dataframe, and then rename the columns?
Upvotes: 2
Views: 322
Reputation: 294488
Option 1
Somewhat simple version
d = df.unstack()
d.index = d.index.map('{0[0]}_{0[1]}'.format)
d.to_frame().T
name_0 name_1 name_2 age_0 age_1 age_2 sex_0 sex_1 sex_2
0 joe jane Alice 21 22 34 M F F
Option 2
Complicate things but probably faster
from numpy.core.defchararray import add
cols = np.tile(df.columns.values, df.shape[0]).astype(str)
rows = np.arange(1, df.shape[0] + 1).repeat(df.shape[1]).astype(str)
vals = df.values.reshape(1, -1)
pd.DataFrame(vals, columns=add(cols, add('_', rows)))
name_1 age_1 sex_1 name_2 age_2 sex_2 name_3 age_3 sex_3
0 joe 21 M jane 22 F Alice 34 F
Upvotes: 5
Reputation: 323316
Try this one , I break down the steps .
df=df.reset_index()
df=pd.melt(df,'index')
df['index']=df['index']+1
df.variable=df.variable+'_'+df['index'].astype(str)
df.sort_values('index').drop('index',1).set_index('variable',drop=True).T
Out[2375]:
variable name_1 age_1 sex_1 name_2 age_2 sex_2 name_3 age_3 sex_3
value joe 21 M jane 22 F Alice 34 F
Upvotes: 3