Reputation: 709
I have two dataframes: data
and rules
.
>>>data >>>rules
vendor rule
0 googel 0 google
1 google 1 dell
2 googly 2 macbook
I am trying to add two new columns into the data
dataframe after computing the Levenshtein similarity between each vendor and rule. So my dataframe should ideally contain columns looking like this:
>>>data
vendor rule similarity
0 googel google 0.8
So far I am trying to perform an apply
function that will return me this structure, but the dataframe apply is not accepting the axis
argument.
>>> for index,r in rules.iterrows():
... data[['rule','similarity']]=data['vendor'].apply(lambda row:[r[0],ratio(row[0],r[0])],axis=1)
...
Traceback (most recent call last):
File "<stdin>", line 2, in <module>
File "/home/mnnr/test/env/test-1.0/runtime/lib/python3.4/site-packages/pandas/core/series.py", line 2220, in apply
mapped = lib.map_infer(values, f, convert=convert_dtype)
File "pandas/src/inference.pyx", line 1088, in pandas.lib.map_infer (pandas/lib.c:62658)
File "/home/mnnr/test/env/test-1.0/runtime/lib/python3.4/site-packages/pandas/core/series.py", line 2209, in <lambda>
f = lambda x: func(x, *args, **kwds)
TypeError: <lambda>() got an unexpected keyword argument 'axis'
Could someone please help me figure out what I am doing wrong? Any change I make is just creating new errors.Thank you
Upvotes: 14
Views: 16879
Reputation: 393883
You're calling the Series
version of apply
for which it doesn't make sense to have an axis
arg hence the error.
If you did:
data[['rule','similarity']]=data[['vendor']].apply(lambda row:[r[0],ratio(row[0],r[0])],axis=1)
then this makes a single column df for which this would work
Or just remove the axis
arg:
data[['rule','similarity']]=data['vendor'].apply(lambda row:[r[0],ratio(row[0],r[0])])
update
Looking at what you're doing, you need to calculate the levenshtein ratio for each rule against every vendor.
You can do this by:
data['vendor'].apply(lambda row: rules['rule'].apply(lambda x: ratio(x, row))
this I think should calculate the ratio for each vendor against every rule.
Upvotes: 15