Reputation: 212
Hallo I'm currently working on a Regression Analysis with the following Code:
for (i in 1:ncol(Ret1)){
r2.out[i]=summary(lm(Ret1[,1]~Ret1[,i]))$r.squared
}
r2.out
This Code runs a simple OLS Regression of each column in the data Frame agianst the first column and provides the R^2 of These regressions. At the Moment the Regression uses all data Points of a column. What I Need now is that the Code instead of using all data Points in a column just uses a rolling window of data Points. So he calculates for a rolling window of 30 Days the R^2 over the entire time Frame. The output is a Matrix with all the R^2 per rolling window for each (1,i) pair.
This Code does the rolling Regression part but does not make the Regression for each (1,i) pair.
dolm <- function(x) summary(lm(Ret1[,1]~Ret1[,i]))$r.squared
rollapplyr(Ret1, 30, dolm, by.column = FALSE)
I really appreciate any help you can provide.
Upvotes: 2
Views: 311
Reputation: 269596
Using the built-in anscombe
data frame we regress the y1
column against x1
and then x2
, etc. We use a width of 3 here for purposes of illustration.
xnames
should be set to the names of the x variables. In the anscombe
data set the column names that begin with x
are the x variables. As another example, if all the columns are x variables except the first then xnames <- names(DF)[-1]
could be used.
We define an R squared function, rsq
which takes the indexes to use, ix
and the x variable name xname
. We then sapply
over the xnames
and for each one rollapply
over the indices 1:n
.
library(zoo)
xnames <- grep("x", names(anscombe), value = TRUE)
n <- nrow(anscombe)
w <- 3
rsq <- function(ix, xname) summary(lm(y1 ~., anscombe[c("y1", xname)], subset = ix))$r.sq
sapply(xnames, function(xname) rollapply(1:n, w, rsq, xname = xname ))
giving the following result of dimensions n - w + 1 by length(xnames):
x1 x2 x3 x4
[1,] 2.285384e-01 2.285384e-01 2.285384e-01 0.0000000
[2,] 3.591782e-05 3.591782e-05 3.591782e-05 0.0000000
[3,] 9.841920e-01 9.841920e-01 9.841920e-01 0.0000000
[4,] 5.857410e-01 5.857410e-01 5.857410e-01 0.0000000
[5,] 9.351609e-01 9.351609e-01 9.351609e-01 0.0000000
[6,] 8.760332e-01 8.760332e-01 8.760332e-01 0.7724447
[7,] 9.494869e-01 9.494869e-01 9.494869e-01 0.7015512
[8,] 9.107256e-01 9.107256e-01 9.107256e-01 0.3192194
[9,] 8.385510e-01 8.385510e-01 8.385510e-01 0.0000000
Variations
1) It would also be possible to reverse the order of the rollapply
and sapply
replacing the last line of code with:
rollapply(1:n, 3, function(ix) sapply(xnames, rsq, ix = ix))
2) Another variation is to replace the definition of rsq
and the sapply/rollapply line with the following single statement. It may be a bit harder to read so you may prefer the first solution but it does entail one simplification -- namely, xname
need no longer be an explicit argument of the inner anonymous function (which takes the place of rsq
above):
sapply(xnames, function(xname) rollapply(1:n, 3, function(ix)
summary(lm(y1 ~., anscombe[c("y1", xname)], subset = ix))$r.sq))
Update: Have fixed line which is now n <- nrow(anscombe)
Upvotes: 1