Reputation: 13051
Consider the following synthetic example:
import pandas as pd
import numpy as np
np.random.seed(42)
ix = pd.date_range('2017-01-01', '2017-01-15', freq='1H')
df = pd.DataFrame(
{
'val': np.random.random(size=ix.shape[0]),
'cat': np.random.choice(['foo', 'bar'], size=ix.shape[0])
},
index=ix
)
Which yields a table of the following form:
cat val
2017-01-01 00:00:00 bar 0.374540
2017-01-01 01:00:00 foo 0.950714
2017-01-01 02:00:00 bar 0.731994
2017-01-01 03:00:00 bar 0.598658
2017-01-01 04:00:00 bar 0.156019
Now, I want to count the number and the average value of instances per each category and date.
The following groupby
, is almost perfect:
df.groupby(['cat',df.index.date]).agg({'val': ['count', 'mean']})
returning:
val
count mean
cat
bar 2017-01-01 16 0.437941
2017-01-02 16 0.456361
2017-01-03 9 0.514388...
The problem with this one, is that the second level of the index turned into strings and not date
. First question: Why is it happening? How can I avoid it?
Next, I tried a combination of groupby
and resample
:
df.groupby('cat').resample('1d').agg({'val': 'mean'})
Here, the index is correct, but I fail to run both mean
and count
aggregations. This is the second question: why does
df.groupby('cat').resample('1d').agg({'val': ['mean', 'count']})
Doesn't work?
Last question what is the clean way to get an aggregated (using both functions) view and with date
type for the index?
Upvotes: 5
Views: 12279
Reputation: 862511
For first question need convert to datetime
s with no times like:
df1 = df.groupby(['cat',df.index.floor('d')]).agg({'val': ['count', 'mean']})
#df1 = df.groupby(['cat',df.index.normalize()]).agg({'val': ['count', 'mean']})
#df1 = df.groupby(['cat',pd.to_datetime(df.index.date)]).agg({'val': ['count', 'mean']})
print (df1.index.get_level_values(1))
DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04',
'2017-01-05', '2017-01-06', '2017-01-07', '2017-01-08',
'2017-01-09', '2017-01-10', '2017-01-11', '2017-01-12',
'2017-01-13', '2017-01-14', '2017-01-01', '2017-01-02',
'2017-01-03', '2017-01-04', '2017-01-05', '2017-01-06',
'2017-01-07', '2017-01-08', '2017-01-09', '2017-01-10',
'2017-01-11', '2017-01-12', '2017-01-13', '2017-01-14',
'2017-01-15'],
dtype='datetime64[ns]', freq=None)
... because date
s are python objects:
df1 = df.groupby(['cat',df.index.date]).agg({'val': ['count', 'mean']})
print (type(df1.index.get_level_values(1)[0]))
<class 'datetime.date'>
Second question - in my opinion it is bug or not implemented yet, because working one function name in agg
only:
df2 = df.groupby('cat').resample('1d')['val'].agg('mean')
#df2 = df.groupby('cat').resample('1d')['val'].mean()
print (df2)
cat
bar 2017-01-01 0.437941
2017-01-02 0.456361
2017-01-03 0.514388
2017-01-04 0.580295
2017-01-05 0.426841
2017-01-06 0.642465
2017-01-07 0.395970
2017-01-08 0.359940
...
...
but working old way with apply
:
df2 = df.groupby('cat').apply(lambda x: x.resample('1d')['val'].agg(['mean','count']))
print (df2)
mean count
cat
bar 2017-01-01 0.437941 16
2017-01-02 0.456361 16
2017-01-03 0.514388 9
2017-01-04 0.580295 12
2017-01-05 0.426841 12
2017-01-06 0.642465 7
2017-01-07 0.395970 11
2017-01-08 0.359940 9
2017-01-09 0.564851 12
...
...
Upvotes: 4