Reputation: 107
I want to implement a polymorphic visitor using lambdas without implementing a class. I already have a foundation but am struggling with the type deduction for the parameters of my lambdas.
Let's say I have some legacy code base that decided to use type tags for a polymorphic type like so:
enum class ClassType
{
BaseType = 0, TypeA, TypeB
};
class BaseType
{
public:
virtual ~BaseType() {}
ClassType getType() const
{ return type; }
protected:
ClassType type;
};
class TypeA : public BaseType
{
public:
static const ClassType Type = ClassType::TypeA;
explicit TypeA(int val) : val(val)
{ type = ClassType::TypeA; }
virtual ~TypeA() {}
int val;
};
class TypeB : public BaseType
{
public:
static const ClassType Type = ClassType::TypeB;
explicit TypeB(std::string s) : s(s)
{ type = ClassType::TypeB; }
virtual ~TypeB() {}
std::string s;
};
What I want to achieve is a visitor similar to the std::variant
visitors that would then look like this:
std::vector<BaseType*> elements;
elements.emplace_back(new TypeA(1));
elements.emplace_back(new TypeB("hello"));
for (auto elem : elements)
{
visit(elem,
[](TypeA* typeA) {
std::cout << "Found TypeA element, val=" << typeA->val << std::endl;
},
[](TypeB* typeB) {
std::cout << "Found TypeB element, s=" << typeB->s << std::endl;
}
);
}
My so far failing approach for implementing such a visit<>()
function was the following code:
template <typename T>
struct identity
{
typedef T type;
};
template <typename T>
void apply_(BaseType* b, typename identity<std::function<void(T*)>&>::type visitor)
{
if (b->getType() != T::Type)
return;
T* t = dynamic_cast<T*>(b);
if (t) visitor(t);
}
template <typename... Ts>
void visit(BaseType* b, Ts... visitors) {
std::initializer_list<int>{ (apply_(b, visitors), 0)... };
}
The compiler complains that it cannot deduce the template parameter T
for my apply_
function.
How can I declare the correct template and function signature of apply_
to correctly capture lambdas and maybe even other callables? Or is something like this even possible at all?
Upvotes: 5
Views: 2124
Reputation: 217810
Assuming that you cannot change the virtual classes, you may do the following:
template <typename F>
decltype(auto) visitBaseType(BaseType& base, F&& f)
{
switch (base.getType())
{
case ClassType::BaseType: return f(base);
case ClassType::TypeA: return f(dynamic_cast<TypeA&>(base));
case ClassType::TypeB: return f(dynamic_cast<TypeB&>(base));
}
throw std::runtime_error("Bad type");
}
template<class... Ts> struct overloaded : Ts... {
using Ts::operator()...;
overloaded(Ts... ts) : Ts(ts)... {}
};
template<class... Ts> overloaded(Ts...) -> overloaded<Ts...>;
template <typename ... Fs>
decltype(auto) visit(BaseType& base, Fs&&... fs)
{
return visitBaseType(base, overloaded(fs...));
}
Upvotes: 1
Reputation: 303337
I don't always say this, but this may be a job for the Boost.Preprocessor. You have a list of class types that corresponds to a list of enums, each instance identifies itself via getType()
. So we can use that:
#include <boost/preprocessor/seq/for_each.hpp>
#define CLASS_LIST (TypeA) (TypeB)
// just take one visitor
template <class Visitor>
void visit(Base* ptr, Visitor f) {
switch (ptr->getType()) {
#define CASE_ST(r, data, elem) case elem: f(static_cast<elem*>(ptr)); break;
BOOST_PP_SEQ_FOR_EACH(CASE_ST, ~, CLASS_LIST)
#undef CASE_ST
default: f(ptr); // in case you want an "else"
// this is optional
}
}
That will preprocess into:
switch (ptr->getType()) {
case TypeA: f(static_cast<TypeA*>(ptr)); break;
case TypeB: f(static_cast<TypeB*>(ptr)); break;
default: f(ptr);
}
Upvotes: 0
Reputation: 93324
Here's an (incomplete) solution that works with any function object that has an unary, non-overloaded, non-templated operator()
. Firstly, let's create an helper type alias to retrieve the type of the first argument:
template <typename>
struct deduce_arg_type;
template <typename Return, typename X, typename T>
struct deduce_arg_type<Return(X::*)(T) const>
{
using type = T;
};
template <typename F>
using arg_type = typename deduce_arg_type<decltype(&F::operator())>::type;
Then, we can use a fold expression in a variadic template to call any function object for which dynamic_cast
succeeds:
template <typename Base, typename... Fs>
void visit(Base* ptr, Fs&&... fs)
{
const auto attempt = [&](auto&& f)
{
using f_type = std::decay_t<decltype(f)>;
using p_type = arg_type<f_type>;
if(auto cp = dynamic_cast<p_type>(ptr); cp != nullptr)
{
std::forward<decltype(f)>(f)(cp);
}
};
(attempt(std::forward<Fs>(fs)), ...);
}
Usage example:
int main()
{
std::vector<std::unique_ptr<Base>> v;
v.emplace_back(std::make_unique<A>());
v.emplace_back(std::make_unique<B>());
v.emplace_back(std::make_unique<C>());
for(const auto& p : v)
{
visit(p.get(), [](const A*){ std::cout << "A"; },
[](const B*){ std::cout << "B"; },
[](const C*){ std::cout << "C"; });
}
}
ABC
Upvotes: 3