Reputation: 355
I have a pandas dataframe looking like this:
Index Stat value1 value2 value3 value4 value5 value6
2016-11-01 00:00:00.000 Gard 0.08 0.24 0.09 6.08 18.4 0.268514431642
2016-11-01 00:00:00.100 Gard 0.08 0.24 0.09 6.08 18.4 0.268514431642
2016-11-01 00:00:00.200 Gard 0.08 0.24 0.09 6.08 18.4 0.268514431642
2016-11-01 00:00:00.300 Gard 0.08 0.24 0.09 6.08 18.4 0.268514431642
2016-11-01 00:00:00.400 Gard 0.08 0.24 0.09 6.08 18.4 0.268514431642
2016-11-02 00:00:00.000 Gard 0.08 0.24 0.09 6.08 18.4 0.268514431642
2016-11-02 00:00:00.100 Gard 0.08 0.24 0.09 6.08 18.4 0.268514431642
2016-11-02 00:00:00.200 Gard 0.15 0.25 0.01 6.08 31.0 0.291719042916
2016-11-02 00:00:00.300 Gard 0.15 0.25 0.01 6.08 31.0 0.291719042916
Of course this is just a snippet, the whole dataframe has about 4.3 million rows.
I would like to extract each line that correponds to a date. So all lines that have the timestamp date 2016-11-01 into one file and 2016-1-02 into another file. So two files looking like this:
Index Stat value1 value2 value3 value4 value5 value6
2016-11-01 00:00:00.000 Gard 0.08 0.24 0.09 6.08 18.4 0.268514431642
2016-11-01 00:00:00.100 Gard 0.08 0.24 0.09 6.08 18.4 0.268514431642
2016-11-01 00:00:00.200 Gard 0.08 0.24 0.09 6.08 18.4 0.268514431642
2016-11-01 00:00:00.300 Gard 0.08 0.24 0.09 6.08 18.4 0.268514431642
2016-11-01 00:00:00.400 Gard 0.08 0.24 0.09 6.08 18.4 0.268514431642
And:
Index Stat value1 value2 value3 value4 value5 value6
2016-11-02 00:00:00.000 Gard 0.08 0.24 0.09 6.08 18.4 0.268514431642
2016-11-02 00:00:00.100 Gard 0.08 0.24 0.09 6.08 18.4 0.268514431642
2016-11-02 00:00:00.200 Gard 0.15 0.25 0.01 6.08 31.0 0.291719042916
2016-11-02 00:00:00.300 Gard 0.15 0.25 0.01 6.08 31.0 0.291719042916
I tried to use groupby
in the following command:
grouped_df = df.groupby(df.index.date)["Stat","value1","value2","value3","value4","value5","value6"]
But I don't get any output or error. It runs but nothing happens. Am I doing anything wrong? Is this even the correct function to use? Or is there an easier, better way?
Upvotes: 1
Views: 375