Reputation: 7576
LabelEncoder
won't "remember" parameters. When I fit and transform data with it then ask for the parameters, all I get is {}
. This makes it impossible to re-use the encoder on new data.
Example:
from sklearn.preprocessing import LabelEncoder
encode = LabelEncoder()
encode.fit_transform(['one', 'two', 'three'])
print(encode.get_params())
Not sure about the intended format, but I expect something like {['one', 0], ['two', 1], ['three', 2]}
Actual Result: {}
I'm on:
Darwin-16.7.0-x86_64-i386-64bit
Python 3.6.1 |Anaconda 4.4.0 (x86_64)| (default, May 11 2017, 13:04:09)
[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)]
NumPy 1.12.1
SciPy 0.19.0
Scikit-Learn 0.18.1
Upvotes: 5
Views: 3798
Reputation: 805
Label encoder stores the parameters in the classes_ attribute. You can obtain the encoded values transforming those classes and creating a dictionary. This encoder will work with new data that has the same labels otherwise it will raise a ValueError. Use the transform method on the labels you want to encode and that's it.
from sklearn import preprocessing
encode = preprocessing.LabelEncoder()
encode.fit_transform(['one', 'two', 'three'])
keys = encode.classes_
values = encode.transform(encode.classes_)
dictionary = dict(zip(keys, values))
print(dictionary)
Output: {'three': 1, 'two': 2, 'one': 0}
Upvotes: 10