Reputation: 65
I am trying to implement dijkstra's algorithm (on an undirected graph) to find the shortest path and my code is this.
Note: I am not using heap/priority queue or anything but an adjacency list, a dictionary to store weights and a bool list to avoid cycling in the loops/recursion forever. Also, the algorithm works for most test cases but fails for this particular one here: https://ideone.com/iBAT0q
Important : Graph can have multiple edges from v1 to v2 (or vice versa), you have to use the minimum weight.
import sys
sys.setrecursionlimit(10000)
def findMin(n):
for i in x[n]:
cost[n] = min(cost[n],cost[i]+w[(n,i)])
def dik(s):
for i in x[s]:
if done[i]:
findMin(i)
done[i] = False
dik(i)
return
q = int(input())
for _ in range(q):
n,e = map(int,input().split())
x = [[] for _ in range(n)]
done = [True]*n
w = {}
cost = [1000000000000000000]*n
for k in range(e):
i,j,c = map(int,input().split())
x[i-1].append(j-1)
x[j-1].append(i-1)
try: #Avoiding multiple edges
w[(i-1,j-1)] = min(c,w[(i-1,j-1)])
w[(j-1,i-1)] = w[(i-1,j-1)]
except:
try:
w[(i-1,j-1)] = min(c,w[(j-1,i-1)])
w[(j-1,i-1)] = w[(i-1,j-1)]
except:
w[(j-1,i-1)] = c
w[(i-1,j-1)] = c
src = int(input())-1
#for i in sorted(w.keys()):
# print(i,w[i])
done[src] = False
cost[src] = 0
dik(src) #First iteration assigns possible minimum to all nodes
done = [True]*n
dik(src) #Second iteration to ensure they are minimum
for val in cost:
if val == 1000000000000000000:
print(-1,end=' ')
continue
if val!=0:
print(val,end=' ')
print()
Upvotes: 0
Views: 154
Reputation: 29126
The optimum isn't always found in the second pass. If you add a third pass to your example, you get closer to the expected result and after the fourth iteration, you're there.
You could iterate until no more changes are made to the cost array:
done[src] = False
cost[src] = 0
dik(src)
while True:
ocost = list(cost) # copy for comparison
done = [True]*n
dik(src)
if cost == ocost:
break
Upvotes: 1