Reputation: 360
My pandas dataframe is as follows:
df = pd.DataFrame({"PAR NAME":['abc','def','def','def','abc'], "value":[1,2,3,4,5],"DESTCD":['E','N','E','E','S']})
I need to pivot df for PAR NAME and find out what %age of its value comes from places where DESTCD is 'E'. Something like this (which obviously didnt work!)
df.pivot_table(index="PAR NAME",values=["value"],aggfunc={'value':lambda x: (x.sum() if x["DESTCD"]=="E")*100.0/x.sum()})
I am currently doing this through adding a conditional column and then summing it along with 'value' in pivot and then dividing, but my database is huge (1gb+) and there has got to be an easier way.
Edit: Expected Output abc 16.67 (since abc and E is 1 out of total abc which is 6) def 77.78 (since def and E is 7 out of total def of 9);
(Note: Please dont recommend slicing multiple dataframes as mentioned my data is huge and efficiency is critical :) )
Upvotes: 0
Views: 7304
Reputation: 360
I also found a way to answer the question via pivot which is equally efficient as the selected answer! Adding here for convenience of others:
df.pivot_table(index="PAR NAME",values=["value"],aggfunc={'value':lambda x: x[df.iloc[x.index]['DESTCD']=='E'].sum()*100.0/x.sum()})
Logic being that aggfunc only works with series in question and cannot reference any other series till you get them via indexing the main df.
Upvotes: 2
Reputation: 30605
Instead of pivot table you can use multiple groupby methods based on PAR NAME
and then apply the operation you want. i.e
new = df[df['DESTCD']=='E'].groupby('PAR NAME')['value'].sum()*100/df.groupby('PAR NAME')['value'].sum()
Output:
PAR NAME abc 16.666667 def 77.777778 Name: value, dtype: float64
If you want timings
%%timeit
df[df['DESTCD']=='E'].groupby('PAR NAME')['value'].sum()*100/df.groupby('PAR NAME')['value'].sum()
100 loops, best of 3: 4.03 ms per loop
%%timeit
df = pd.concat([df]*10000)
df[df['DESTCD']=='E'].groupby('PAR NAME')['value'].sum()*100/df.groupby('PAR NAME')['value'].sum()
100 loops, best of 3: 15.6 ms per loop
Upvotes: 2
Reputation: 333
I tried to solve the problem without specifically referencing 'E' so it is generalizable to any alphabet letter. The output is a dataframe that you can then index on E to get your answer. I simply did the aggregation separately and then used an efficient join method.
df = pd.DataFrame({"PAR NAME":['abc','def','def','def','abc'], "value":[1,2,3,4,5],"DESTCD":['E','N','E','E','S']})
# First groupby 'DESTCD' and 'PAR NAME'
gb = df.groupby(['DESTCD', 'PAR NAME'], as_index=False).sum()
print(gb)
DESTCD PAR NAME value
0 E abc 1
1 E def 7
2 N def 2
3 S abc 5
gb_parname = gb.groupby(['PAR NAME']).sum()
out = gb.join(gb_parname, on='PAR NAME', rsuffix='Total')
print(out)
DESTCD PAR NAME value valueTotal
0 E abc 1 6
1 E def 7 9
2 N def 2 9
3 S abc 5 6
out.loc[:, 'derived']= out.apply(lambda df: df.value/df.valueTotal, axis=1)
print(out)
DESTCD PAR NAME value valueTotal derived
0 E abc 1 6 0.166667
1 E def 7 9 0.777778
2 N def 2 9 0.222222
3 S abc 5 6 0.833333
It's also a relatively efficient operation
%%timeit
gb = df.groupby(['DESTCD', 'PAR NAME'], as_index=False).sum()
gb_parname = gb.groupby(['PAR NAME']).sum()
out = gb.join(gb_parname, on='PAR NAME', rsuffix='Total')
out.loc[:, 'derived']= out.apply(lambda df: df.value/df.valueTotal, axis=1)
100 loops, best of 3: 6.31 ms per loop
Upvotes: 2