Reputation: 1718
I have a DataFrame which looks like this:
x = pd.DataFrame({'user': ['a', 'a', 'a', 'a', 'a', 'b', 'b', 'b', 'b','b'], 'rd': ['2016-01-01', '2016-01-01' ,
'2016-02-01', '2016-02-01', '2016-02-01', '2016-05-01', '2016-05-01',
'2016-06-01','2016-06-01', '2016-06-01'],
'fd' : ['2016-02-01', '2016-04-01', '2016-03-01', '2016-04-01', '2016-05-01',
'2016-06-01', '2016-07-01', '2016-08-01', '2016-07-01', '2016-09-01'],
'val': [3, 4, 16, 7, 9, 2, 5, 11, 20, 1]})
x.head(6)
fd rd user val
0 2016-02-01 2016-01-01 a 3
1 2016-04-01 2016-01-01 a 4
2 2016-03-01 2016-02-01 a 16
3 2016-04-01 2016-02-01 a 7
4 2016-05-01 2016-02-01 a 9
5 2016-06-01 2016-05-01 b 2
x['rd'] = pd.to_datetime(x['rd'])
x['fd'] = pd.to_datetime(x['fd'])
For each rd date I would like to have the next 3 months dates. For instance:
rd = 2016-01-01
I would like to have:
fd = [2016-02-01, 2016-03-01, 2016-04-01]
Basically: for each rd date I want the next 3 months as fd dates.
In my dataset I have missing dates both in rd (2016-03-01, 2016-04-01)
and in fd once I have the rd date (rd = 2016-01-01, fd missing = 2016-03-01)
.
Furthermore I have 2 different users x['user'].unique() = ['a', 'b']
.
So I may have missing dates (both 'rd' and 'fd') in one user, in the other or in both.
What I would like to achieve is an efficient way to get a dataframe with all dates for all users.
The question starts from an already answered one Question , but the problem here is a little more complex, since I'm not able to fit Multiindex to the problem at hand.
What I did until now was to create the 2 column of dates:
index = pd.date_range(x['rd'].min(),
x['rd'].max(), freq='MS')
from datetime import datetime
from dateutil.relativedelta import relativedelta
def add_months(date):
fcs_dates = [date + relativedelta(months = 1), date + relativedelta(months = 2), date + relativedelta(months = 3)]
return fcs_dates
fcs_dates = list(map(lambda x: add_months(x), index.tolist()))
fcs_dates = [j for i in fcs_dates for j in i]
index3 = index.tolist()*3
index3.sort()
So the output is:
list(zip(index3, fcs_dates))[:5]
[(Timestamp('2016-01-01 00:00:00', freq='MS'),
Timestamp('2016-02-01 00:00:00', freq='MS')),
(Timestamp('2016-01-01 00:00:00', freq='MS'),
Timestamp('2016-03-01 00:00:00', freq='MS')),
(Timestamp('2016-01-01 00:00:00', freq='MS'),
Timestamp('2016-04-01 00:00:00', freq='MS')),
(Timestamp('2016-02-01 00:00:00', freq='MS'),
Timestamp('2016-03-01 00:00:00', freq='MS')),
(Timestamp('2016-02-01 00:00:00', freq='MS'),
Timestamp('2016-04-01 00:00:00', freq='MS'))]
Unfortunately I have no clue about how to plug this into MultiIndex function.
Thank you for your help
Upvotes: 1
Views: 915
Reputation: 1718
So, I solved my own question by doing a left join for each group (user), where the left dataframe is the one constructed with dates.
pd.DataFrame with dates:
left_df = pd.DataFrame({'rd' : index_3, 'fd' : fcs_dates})
left_df['rd'] = left_df['rd'].astype(str)
left_df['fd'] = left_df['fd'].astype(str)
grouped by user DataFrame:
df_gr = x.groupby(['user'])
list_gr = []
for i, gr in df_gr:
gr_new = pd.merge(left_df, gr, left_on= ['rd', 'fd'],
right_on = ['rd', 'fd'],
how = 'left')
list_gr.append(gr_new)
df_final = pd.concat(list_gr)
final dataframe:
fd rd user val
0 2016-02-01 2016-01-01 a 3.0
1 2016-03-01 2016-01-01 NaN NaN
2 2016-04-01 2016-01-01 a 4.0
3 2016-03-01 2016-02-01 a 16.0
4 2016-04-01 2016-02-01 a 7.0
5 2016-05-01 2016-02-01 a 9.0
6 2016-04-01 2016-03-01 NaN NaN
7 2016-05-01 2016-03-01 NaN NaN
8 2016-06-01 2016-03-01 NaN NaN
9 2016-05-01 2016-04-01 NaN NaN
10 2016-06-01 2016-04-01 NaN NaN
11 2016-07-01 2016-04-01 NaN NaN
12 2016-06-01 2016-05-01 NaN NaN
13 2016-07-01 2016-05-01 NaN NaN
14 2016-08-01 2016-05-01 NaN NaN
15 2016-07-01 2016-06-01 NaN NaN
16 2016-08-01 2016-06-01 NaN NaN
17 2016-09-01 2016-06-01 NaN NaN
0 2016-02-01 2016-01-01 NaN NaN
1 2016-03-01 2016-01-01 NaN NaN
2 2016-04-01 2016-01-01 NaN NaN
3 2016-03-01 2016-02-01 NaN NaN
4 2016-04-01 2016-02-01 NaN NaN
5 2016-05-01 2016-02-01 NaN NaN
6 2016-04-01 2016-03-01 NaN NaN
7 2016-05-01 2016-03-01 NaN NaN
8 2016-06-01 2016-03-01 NaN NaN
9 2016-05-01 2016-04-01 NaN NaN
10 2016-06-01 2016-04-01 NaN NaN
11 2016-07-01 2016-04-01 NaN NaN
12 2016-06-01 2016-05-01 b 2.0
13 2016-07-01 2016-05-01 b 5.0
14 2016-08-01 2016-05-01 NaN NaN
15 2016-07-01 2016-06-01 b 20.0
16 2016-08-01 2016-06-01 b 11.0
17 2016-09-01 2016-06-01 b 1.0
Unfortunately I don't think this is the quickest method, but I got what I wanted.
Upvotes: 1
Reputation: 333
I'm having a lot of trouble understanding your question, and I can't get index3 to work in python 3.
Are you looking for something along these lines?
indx = pd.MultiIndex.from_product([['a', 'b'], [index], [pd.DatetimeIndex(fcs_dates)]])
If you're able to construct the levels you want in your multi-index, from_product takes their cartesian product to create the index.
Upvotes: 2