Reputation: 2230
I have following code:
import numpy as np
import tensorflow as tf
series = tf.placeholder(tf.float32, shape=[None, 5])
series_length = tf.placeholder(tf.int32, shape=[None])
useful_series = tf.magic_slice_function(series, series_length)
with tf.Session() as sess:
input_x = np.array([[1, 2, 3, 0, 0],
[2, 3, 0, 0, 0],
[1, 0, 0, 0, 0]])
input_y = np.array([[3], [2], [1]])
print(sess.run(useful_series, feed_dict={series: input_x, series_length: input_y}))
Expected output as following
[[1,2,3],[2,3],[1]]
I have tried several functions, etc tf.gather, tf.slice. All of them do not work. What is the magic_slice_function?
Upvotes: 1
Views: 859
Reputation: 784
It's a little tricky:
import numpy as np
import tensorflow as tf
series = tf.placeholder(tf.float32, shape=[None, 5])
series_length = tf.placeholder(tf.int64)
def magic_slice_function(input_x, input_y):
array = []
for i in range(len(input_x)):
temp = [input_x[i][j] for j in range(input_y[i])]
array.extend(temp)
return [array]
with tf.Session() as sess:
input_x = np.array([[1, 2, 3, 0, 0],
[2, 3, 0, 0, 0],
[1, 0, 0, 0, 0]])
input_y = np.array([3, 2, 1], dtype=np.int64)
merged_series = tf.py_func(magic_slice_function, [series, series_length], tf.float32, name='slice_func')
out = tf.split(merged_series, input_y)
print(sess.run(out, feed_dict={series: input_x, series_length: input_y}))
The output will be:
[array([ 1., 2., 3.], dtype=float32), array([ 2., 3.], dtype=float32), array([ 1.], dtype=float32)]
Upvotes: 1