Reputation: 857
I can't enable epoch limits on my string_input_producer without getting a OutOfRange error (requested x, current size 0). It doesn't seem to matter how many elements I request, there is always 0 available.
Here is my FileQueue builder:
def get_queue(base_directory):
files = [f for f in os.listdir(base_directory) if f.endswith('.bin')]
shuffle(files)
file = [os.path.join(base_directory, files[0])]
fileQueue = tf.train.string_input_producer(file, shuffle=False, num_epochs=1)
return fileQueue
If I remove num_epochs=1 from the string_input_producer it can create samples fine.
My input pipeline:
def input_pipeline(instructions, fileQueue):
example, label, feature_name_list = read_binary_format(fileQueue, instructions)
num_preprocess_threads = 16
capacity = 20
example, label = tf.train.batch(
[example, label],
batch_size=50000, # set the batch size way bigger so we always return the full amount of samples from the file
allow_smaller_final_batch=True,
capacity=capacity,
num_threads=num_preprocess_threads)
return example, label
And lastly my session:
with tf.Session(graph=tf.Graph()) as sess:
train_inst_set = sf.DeserializationInstructions.from_filename(os.path.join(input_dir, "Train/config.json"))
fileQueue = sf.get_queue(os.path.join(input_dir, "Train"))
features_train, labels_train = sf.input_pipeline(train_inst_set, fileQueue)
sess.run(tf.global_variables_initializer())
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord, sess=sess)
train_feature_batch, train_label_batch = sess.run([features_train, labels_train])
Upvotes: 0
Views: 1305
Reputation: 857
The issue was caused by this: Issue #1045
For whatever reason, tf.global_variable_initialiser does not initialise all variables. You need to initialise the local variables too.
Add
sess.run(tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()))
to your session.
Upvotes: 1