Reputation: 169
I'm a beginner in both Python and Pandas module. I'm working on a statistics problem in which I want to merge two dataframes with specific styles.
Here is my 1st dataframe for the mean values:
- 5.006 3.418 1.464 0.244
- 5.936 2.770 4.260 1.326
- 6.588 2.974 5.552 2.026
And then is the 2nd dataframe for the std values:
- 0.352490 0.381024 0.173511 0.107210
- 0.516171 0.313798 0.469911 0.197753
- 0.635880 0.322497 0.551895 0.274650
So are there any ways to merge the two dataframes so the final output would look like "mean"±"std"? such as "5.006 ± 0.352490"?
Thank you!
Upvotes: 2
Views: 1320
Reputation: 863611
You need concatenate both df
, need same index and columns names:
df1.astype(str) + ' ± ' + df2.astype(str)
Another solution:
df1.astype(str).add(' ± ').add(df2.astype(str))
df = df1.astype(str) + ' ± ' + df2.astype(str)
print (df)
0 1 2 3
0 -5.006 ± -0.35249 3.418 ± 0.381024 1.464 ± 0.173511 0.244 ± 0.10721
1 -5.936 ± -0.516171 2.77 ± 0.313798 4.26 ± 0.469911 1.326 ± 0.197753
2 -6.588 ± -0.63588 2.974 ± 0.322497 5.552 ± 0.551895 2.026 ± 0.27465
Upvotes: 1
Reputation: 403128
Convert to string using .astype
and then a simple concatenation should suffice.
out = df.astype(str) + ' ± ' + df2.astype(str)
print(out)
0 1 2 3
0 5.006 ± 0.35249 3.418 ± 0.381024 1.464 ± 0.173511 0.244 ± 0.10721
1 5.936 ± 0.516171 2.77 ± 0.313798 4.26 ± 0.469911 1.326 ± 0.197753
2 6.588 ± 0.63588 2.974 ± 0.322497 5.552 ± 0.551895 2.026 ± 0.27465
Works nicely provided you have the same index and columns across both dataframes. If not, you can do set one to the other:
df2.index = df.index
df2.columns = df.columns
out = df.astype(str) + ' ± ' + df2.astype(str)
Details:
df
0 1 2 3
0 5.006 3.418 1.464 0.244
1 5.936 2.770 4.260 1.326
2 6.588 2.974 5.552 2.026
df2
0 1 2 3
0 0.352490 0.381024 0.173511 0.107210
1 0.516171 0.313798 0.469911 0.197753
2 0.635880 0.322497 0.551895 0.274650
Upvotes: 3