user8071804
user8071804

Reputation:

Using isnull() and groupby() on a pandas dataframe

Suppose I have a dataframe df with columns 'A', 'B', 'C'. I would like to count the number of null values in column 'B' as grouped by 'A' and make a dictionary out of it:

Tried the following by failed: df.groupby('A')['B'].isnull().sum().to_dict()

Any help will be appreciated.

Upvotes: 15

Views: 9413

Answers (2)

BENY
BENY

Reputation: 323316

Or using the different between count and size ,see the link

(df.groupby('A')['B'].size()-df.groupby('A')['B'].count()).to_dict()
Out[119]: {1: 2, 2: 1}

Upvotes: 1

piRSquared
piRSquared

Reputation: 294488

Setup

df = pd.DataFrame(dict(A=[1, 2] * 3, B=[1, 2, None, 4, None, None]))

df

   A    B
0  1  1.0
1  2  2.0
2  1  NaN
3  2  4.0
4  1  NaN
5  2  NaN

Option 1

df['B'].isnull().groupby(df['A']).sum().to_dict()

{1: 2.0, 2: 1.0}

Option 2

df.groupby('A')['B'].apply(lambda x: x.isnull().sum()).to_dict()

{1: 2, 2: 1}

Option 3
Getting creative

df.A[df.B.isnull()].value_counts().to_dict()

{1: 2, 2: 1}

Option 4

from collections import Counter

dict(Counter(df.A[df.B.isnull()]))

{1: 2, 2: 1}

Option 5

from collections import defaultdict

d = defaultdict(int)
for t in df.itertuples():
    d[t.A] += pd.isnull(t.B)
dict(d)

{1: 2, 2: 1}

Option 6
Unnecessarily complicated

(lambda t: dict(zip(t[1], np.bincount(t[0]))))(df.A[df.B.isnull()].factorize())

{1: 2, 2: 1}

Option 7

df.groupby([df.B.isnull(), 'A']).size().loc[True].to_dict()

{1: 2, 2: 1}

Upvotes: 23

Related Questions