Reputation: 4984
My question is quite similar to How to modify using a monadic function with lenses? The author asked if something like this exists
overM :: (Monad m) => Lens s t a b -> (a -> m b) -> s -> m t
The answer was mapMOf
mapMOf :: Profunctor p =>
Over p (WrappedMonad m) s t a b -> p a (m b) -> s -> m t
I'm trying to implement a function that modifies state in MonadState
using a monadic function:
modifyingM :: MonadState s m => ASetter s s a b -> (a -> m b) -> m ()
Example without modifingM
:
{-# LANGUAGE TemplateHaskell #-}
module Main where
import Control.Lens (makeLenses, use, (.=))
import Control.Monad.Trans.Class (lift)
import Control.Monad.Trans.State.Lazy (StateT(StateT), execStateT)
data GameObject = GameObject
{ _num :: Int
} deriving (Show)
data Game = Game
{ _objects :: [GameObject]
} deriving (Show)
makeLenses ''Game
makeLenses ''GameObject
defaultGame = Game {_objects = map GameObject [0 .. 3]}
action :: StateT Game IO ()
action = do
old <- use objects
new <- lift $ modifyObjects old
objects .= new
modifyObjects :: [GameObject] -> IO [GameObject]
modifyObjects objs = return objs -- do modifications
main :: IO ()
main = do
execStateT action defaultGame
return ()
This example works. Now I'd like to extract the code from action
to a generic solution modifingM
:
{-# LANGUAGE TemplateHaskell #-}
module Main where
import Control.Lens (makeLenses, use, (.=), ASetter)
import Control.Monad.State.Class (MonadState)
import Control.Monad.Trans.Class (lift)
import Control.Monad.Trans.State.Lazy (StateT(StateT), execStateT)
data GameObject = GameObject
{ _num :: Int
} deriving (Show)
data Game = Game
{ _objects :: [GameObject]
} deriving (Show)
makeLenses ''Game
makeLenses ''GameObject
defaultGame = Game {_objects = map GameObject [0 .. 3]}
modifyingM :: MonadState s m => ASetter s s a b -> (a -> m b) -> m ()
modifyingM l f = do
old <- use l
new <- lift $ f old
l .= new
action :: StateT Game IO ()
action = modifyingM objects modifyObjects
modifyObjects :: [GameObject] -> IO [GameObject]
modifyObjects objs = return objs -- do modifications
main :: IO ()
main = do
execStateT action defaultGame
return ()
This results in compile time errors:
Main.hs:26:14: error:
• Couldn't match type ‘Data.Functor.Identity.Identity s’
with ‘Data.Functor.Const.Const a s’
Expected type: Control.Lens.Getter.Getting a s a
Actual type: ASetter s s a b
• In the first argument of ‘use’, namely ‘l’
In a stmt of a 'do' block: old <- use l
In the expression:
do { old <- use l;
new <- lift $ f old;
l .= new }
• Relevant bindings include
f :: a -> m b (bound at app/Main.hs:25:14)
l :: ASetter s s a b (bound at app/Main.hs:25:12)
modifyingM :: ASetter s s a b -> (a -> m b) -> m ()
(bound at app/Main.hs:25:1)
Main.hs:31:10: error:
• Couldn't match type ‘IO’ with ‘StateT Game IO’
Expected type: StateT Game IO ()
Actual type: IO ()
• In the expression: modifyingM objects modifyObjects
In an equation for ‘action’:
action = modifyingM objects modifyObjects
What's the problem?
Edit 1: Assign new
instead of old
value.
Edit 2: Added example with solution of @Zeta that does not compile.
Edit 3: Remove example of second edit. It didn't compile due to wrong imports (see comment).
Upvotes: 3
Views: 1447
Reputation: 105886
You're using use
on a ASetter
, but use
takes a Getter
:
use :: MonadState s m => Getting a s a -> m a
(.=) :: MonadState s m => ASetter s s a b -> b -> m ()
Unfortunately, ASetter
and Getting
are not the same:
type Getting r s a = (a -> Const r a ) -> s -> Const r s
type ASetter s t a b = (a -> Identity b) -> s -> Identity t
We need to switch between Const
and Identity
arbitrarily. We need a Lens
:
type Lens s t a b = forall f. Functor f => (a -> f b) -> s -> f t
Note that there is no f
on the left-hand side. Next, we note that your lift
is not necessary. After all, f
already works in our target monad m
; you had to use lift
previously because modifyObjects
was in IO
and action
was in StateT Game IO
, but here we just have a single m
:
modifyingM :: MonadState s m => Lens s s a a -> (a -> m b) -> m ()
modifyingM l f = do
old <- use l
new <- f old
l .= old
That works! But it's likely wrong, since you probably want to set the new value in l .= old
. If that's the case, we have to make sure that old
and new
have the same type:
-- only a here, no b
-- v v v v
modifyingM :: MonadState s m => Lens s s a a -> (a -> m a) -> m ()
modifyingM l f = do
old <- use l
new <- f old
l .= new
Keep in mind that you need to lift
modifyObjects
though:
action :: StateT Game IO ()
action = modifyingM objects (lift . modifyObjects)
We could stop here, but just for some fun, let us have a look again at Lens:
type Lens s t a b = forall f. Functor f => (a -> f b) -> s -> f t
For any a -> f b
you give me, I'll give you a new s -> f t
. So if we just plug something in your objects, we have
> :t \f -> objects f
\f -> objects f
:: Functor f => (GameObject -> f GameObject) -> Game -> f Game
Therefore, we just need some MonadState s m => (s -> m s) -> m ()
function, but that's easy to achieve:
import Control.Monad.State.Lazy (get, put) -- not the Trans variant!
modifyM :: MonadState s m => (s -> m s) -> m ()
modifyM f = get >>= f >>= put
Note that you need to use Control.Monad.State
from mtl
instead of Control.Monad.Trans.State
. The latter only defines put :: Monad m => s -> StateT s m ()
and get :: Monad m => StateT s m s
, but you want to use the MonadState
variant from mtl
.
If we put all things together, we see that modifyingM
can be written as:
modifyingM :: MonadState s m => Lens s s a a -> (a -> m a) -> m ()
modifyingM l f = modifyM (l f)
Alternatively, we use the can use the lens functions, although that does not give us the insight that we can use l f
:
modifyingM :: MonadState s m => Lens s s a a -> (a -> m a) -> m ()
modifyingM l f = use l >>= f >>= assign l
Upvotes: 8