Reputation: 3835
I have a dataframe in pandas like:
0 1 2
([0.8898668778942382 0.89533945283595] 0)
([1.2632564814188714 1.0207660696232244] 0)
([1.006649166957976 1.1180973832359227] 0)
([0.9653632916751714 0.8625538463644129] 0)
([1.038366333873932 0.9091449796555554] 0)
All values are strings. I want to remove all special characters and convert to double. I want to apply a function that remove all special character excepr the dot like
import re
re.sub('[^0-9.]+', '',x)
so I want to apply this in all cell of the dataframe. How can I do it? I find df.applymap function but I don't know how to pass the string as argument. I tried
def remSp(x):
re.sub('^[0-9]+', '',x)
df.applymap(remSp())
but I don't know how to pass the cells to the function. Is there a better way to do it?
Thank you
Upvotes: 5
Views: 10017
Reputation: 30605
Why cant use the default replace method on df directly with regex i.e
df = df.replace('[^\d.]', '',regex=True).astype(float)
0 1 2 0 0.889867 0.895339 0.0 1 1.263256 1.020766 0.0 2 1.006649 1.118097 0.0 3 0.965363 0.862554 0.0 4 1.038366 0.909145 0.0
Which is still faster than the other answers.
Upvotes: 6
Reputation: 402263
Iterate over columns, call str.replace
.
for c in df.columns:
df[c] = df[c].str.replace('[^\d.]', '')
df = df.astype(float)
df
0 1 2
0 0.889867 0.895339 0
1 1.263256 1.020766 0
2 1.006649 1.118097 0
3 0.965363 0.862554 0
4 1.038366 0.909145 0
Unfortunately, pandas
does not yet support string accessor operations on the dataframe as a whole, so the alternative to looping over columns would be something slower like a lambdised applymap/transform
.
Performance
100 loops, best of 3: 2.04 ms per loop # applymap
100 loops, best of 3: 2.69 ms per loop # transform
1000 loops, best of 3: 1.45 ms per loop # looped str.replace
df * 10000
)1 loop, best of 3: 618 ms per loop # applymap
1 loop, best of 3: 658 ms per loop # transform
1 loop, best of 3: 341 ms per loop # looped str.replace
1 loop, best of 3: 212 ms per loop # df.replace
Upvotes: 2
Reputation: 76917
Using applymap
In [814]: df.applymap(lambda x: re.sub(r'[^\d.]+', '', x)).astype(float)
Out[814]:
0 1 2
0 0.889867 0.895339 0.0
1 1.263256 1.020766 0.0
2 1.006649 1.118097 0.0
3 0.965363 0.862554 0.0
4 1.038366 0.909145 0.0
Using transform
In [809]: df.transform(lambda x: x.str.replace(r'[^\d.]+', '')).astype(float)
Out[809]:
0 1 2
0 0.889867 0.895339 0.0
1 1.263256 1.020766 0.0
2 1.006649 1.118097 0.0
3 0.965363 0.862554 0.0
4 1.038366 0.909145 0.0
Upvotes: 3