Reputation: 19037
I've got a multidimensional numpy array that I'm trying to stick into a pandas data frame. I'd like to flatten the array, and create a pandas index that reflects the pre-flattened array indices.
Note I'm using 3D to keep the example small, but I'd like to generalize to at least 4D
A = np.random.rand(2,3,4)
array([[[ 0.43793885, 0.40078139, 0.48078691, 0.05334248],
[ 0.76331509, 0.82514441, 0.86169078, 0.86496111],
[ 0.75572665, 0.80860943, 0.79995337, 0.63123724]],
[[ 0.20648946, 0.57042315, 0.71777265, 0.34155005],
[ 0.30843717, 0.39381407, 0.12623462, 0.93481552],
[ 0.3267771 , 0.64097038, 0.30405215, 0.57726629]]])
df = pd.DataFrame(A.flatten())
I'm trying to generate x/y/z columns like this:
A z y x
0 0.437939 0 0 0
1 0.400781 0 0 1
2 0.480787 0 0 2
3 0.053342 0 0 3
4 0.763315 0 1 0
5 0.825144 0 1 1
6 0.861691 0 1 2
7 0.864961 0 1 3
...
21 0.640970 1 2 1
22 0.304052 1 2 2
23 0.577266 1 2 3
I've tried setting this up using np.meshgrid
but I'm going wrong somewhere:
dimnames = ['z', 'y', 'x']
ranges = [ np.arange(x) for x in A.shape ]
ix = [ x.flatten() for x in np.meshgrid(*ranges) ]
for name, col in zip(dimnames, ix):
df[name] = col
df = df.set_index(dimnames).squeeze()
This result looks somewhat sensible, but the indices are wrong:
df
z y x
0 0 0 0.437939
1 0.400781
2 0.480787
3 0.053342
1 0 0 0.763315
1 0.825144
2 0.861691
3 0.864961
0 1 0 0.755727
1 0.808609
2 0.799953
3 0.631237
1 1 0 0.206489
1 0.570423
2 0.717773
3 0.341550
0 2 0 0.308437
1 0.393814
2 0.126235
3 0.934816
1 2 0 0.326777
1 0.640970
2 0.304052
3 0.577266
print A[0,1,0]
0.76331508999999997
print print df.loc[0,1,0]
0.75572665000000006
How can I create the index columns to reflect the shape of A
?
Upvotes: 6
Views: 7260
Reputation: 1
def ndarray_to_indexed_2d(data):
idx = np.column_stack(np.unravel_index(np.arange(np.product(data.shape[:-1])), data.shape[:-1]))
data2d = np.hstack((idx, data.reshape(np.product(data.shape[:-1]), data.shape[-1])))
return data2d
Upvotes: -1
Reputation: 19037
As hpaulj pointed out in a comment, I could add indexing=='ij'
to the meshgrid call:
A = np.random.rand(2,3,4)
dimnames = ['z', 'y', 'x']
ranges = [ np.arange(x) for x in A.shape ]
ix = [ x.flatten() for x in np.meshgrid(*ranges, indexing='ij') ]
for name, col in zip(dimnames, ix):
df[name] = col
df = df.set_index(dimnames).squeeze()
# Compare the results
for ix, val in df.iteritems():
print ix, val == A[ix]
(0, 0, 0) True
(0, 0, 1) True
(0, 0, 2) True
(0, 0, 3) True
(0, 1, 0) True
(0, 1, 1) True
(0, 1, 2) True
(0, 1, 3) True
(0, 2, 0) True
(0, 2, 1) True
(0, 2, 2) True
(0, 2, 3) True
(1, 0, 0) True
(1, 0, 1) True
(1, 0, 2) True
(1, 0, 3) True
(1, 1, 0) True
(1, 1, 1) True
(1, 1, 2) True
(1, 1, 3) True
(1, 2, 0) True
(1, 2, 1) True
(1, 2, 2) True
(1, 2, 3) True
Upvotes: 1
Reputation: 9274
Another possibility, although others maybe faster...
x,y,z = np.indices(A.shape)
df = pd.DataFrame(np.array([p.flatten() for p in [x,y,z,A]]).T
,columns=['x','y','z',0])
Upvotes: 0
Reputation: 402902
My solution is based on this this answer by Divakar involving np.ogrid
. This function should work for any array of any dimension.
def indices_merged_arr(arr):
n = arr.ndim
grid = np.ogrid[tuple(map(slice, arr.shape))]
out = np.empty(arr.shape + (n+1,), dtype=arr.dtype)
for i in range(n):
out[...,i+1] = grid[i]
out[...,0] = arr
out.shape = (-1,n+1)
return out
A = np.array([[[ 0.43793885, 0.40078139, 0.48078691, 0.05334248],
[ 0.76331509, 0.82514441, 0.86169078, 0.86496111],
[ 0.75572665, 0.80860943, 0.79995337, 0.63123724]],
[[ 0.20648946, 0.57042315, 0.71777265, 0.34155005],
[ 0.30843717, 0.39381407, 0.12623462, 0.93481552],
[ 0.3267771 , 0.64097038, 0.30405215, 0.57726629]]])
df = pd.DataFrame(indices_merged_arr(A), columns=list('Axyz'))
df
A x y z
0 0.437939 0.0 0.0 0.0
1 0.400781 0.0 0.0 1.0
2 0.480787 0.0 0.0 2.0
3 0.053342 0.0 0.0 3.0
4 0.763315 0.0 1.0 0.0
5 0.825144 0.0 1.0 1.0
6 0.861691 0.0 1.0 2.0
7 0.864961 0.0 1.0 3.0
8 0.755727 0.0 2.0 0.0
9 0.808609 0.0 2.0 1.0
10 0.799953 0.0 2.0 2.0
11 0.631237 0.0 2.0 3.0
12 0.206489 1.0 0.0 0.0
13 0.570423 1.0 0.0 1.0
14 0.717773 1.0 0.0 2.0
15 0.341550 1.0 0.0 3.0
16 0.308437 1.0 1.0 0.0
17 0.393814 1.0 1.0 1.0
18 0.126235 1.0 1.0 2.0
19 0.934816 1.0 1.0 3.0
20 0.326777 1.0 2.0 0.0
21 0.640970 1.0 2.0 1.0
22 0.304052 1.0 2.0 2.0
23 0.577266 1.0 2.0 3.0
Upvotes: 2
Reputation: 880547
You could use pd.MultiIndex.from_product
:
import numpy as np
import pandas as pd
import string
def using_multiindex(A, columns):
shape = A.shape
index = pd.MultiIndex.from_product([range(s)for s in shape], names=columns)
df = pd.DataFrame({'A': A.flatten()}, index=index).reset_index()
return df
A = np.array([[[ 0.43793885, 0.40078139, 0.48078691, 0.05334248],
[ 0.76331509, 0.82514441, 0.86169078, 0.86496111],
[ 0.75572665, 0.80860943, 0.79995337, 0.63123724]],
[[ 0.20648946, 0.57042315, 0.71777265, 0.34155005],
[ 0.30843717, 0.39381407, 0.12623462, 0.93481552],
[ 0.3267771 , 0.64097038, 0.30405215, 0.57726629]]])
df = using_multiindex(A, list('ZYX'))
yields
Z Y X A
0 0 0 0 0.437939
1 0 0 1 0.400781
2 0 0 2 0.480787
3 0 0 3 0.053342
...
21 1 2 1 0.640970
22 1 2 2 0.304052
23 1 2 3 0.577266
Or if performance is a top priority, consider using senderle's cartesian_product
. (See the code, below.)
Here is a benchmark for A with shape (100, 100, 100):
In [321]: %timeit using_cartesian_product(A, columns)
100 loops, best of 3: 13.8 ms per loop
In [318]: %timeit using_multiindex(A, columns)
10 loops, best of 3: 35.6 ms per loop
In [320]: %timeit indices_merged_arr_generic(A, columns)
10 loops, best of 3: 29.1 ms per loop
In [319]: %timeit using_product(A)
1 loop, best of 3: 461 ms per loop
This is the setup I used for the benchmark:
import numpy as np
import pandas as pd
import functools
import itertools as IT
import string
product = IT.product
def cartesian_product_broadcasted(*arrays):
"""
http://stackoverflow.com/a/11146645/190597 (senderle)
"""
broadcastable = np.ix_(*arrays)
broadcasted = np.broadcast_arrays(*broadcastable)
dtype = np.result_type(*arrays)
rows, cols = functools.reduce(np.multiply, broadcasted[0].shape), len(broadcasted)
out = np.empty(rows * cols, dtype=dtype)
start, end = 0, rows
for a in broadcasted:
out[start:end] = a.reshape(-1)
start, end = end, end + rows
return out.reshape(cols, rows).T
def using_cartesian_product(A, columns):
shape = A.shape
coords = cartesian_product_broadcasted(*[np.arange(s, dtype='int') for s in shape])
df = pd.DataFrame(coords, columns=columns)
df['A'] = A.flatten()
return df
def using_multiindex(A, columns):
shape = A.shape
index = pd.MultiIndex.from_product([range(s)for s in shape], names=columns)
df = pd.DataFrame({'A': A.flatten()}, index=index).reset_index()
return df
def indices_merged_arr_generic(arr, columns):
n = arr.ndim
grid = np.ogrid[tuple(map(slice, arr.shape))]
out = np.empty(arr.shape + (n+1,), dtype=arr.dtype)
for i in range(n):
out[...,i] = grid[i]
out[...,-1] = arr
out.shape = (-1,n+1)
df = pd.DataFrame(out, columns=['A']+columns)
return df
def using_product(A):
x, y, z = A.shape
x_, y_, z_ = zip(*product(range(x), range(y), range(z)))
df = pd.DataFrame(A.flatten()).assign(x=x_, y=y_, z=z_)
return df
A = np.random.random((100,100,100))
shape = A.shape
columns = list(string.ascii_uppercase[-len(shape):][::-1])
Upvotes: 5
Reputation: 109686
from itertools import product
np.random.seed(0)
A = np.random.rand(2, 3, 4)
x, y, z = A.shape
x_, y_, z_ = zip(*product(range(x), range(y), range(z)))
df = pd.DataFrame(A.flatten()).assign(x=x_, y=y_, z=z_)
>>> df
0 x y z
0 0.548814 0 0 0
1 0.715189 0 0 1
2 0.602763 0 0 2
3 0.544883 0 0 3
4 0.423655 0 1 0
5 0.645894 0 1 1
6 0.437587 0 1 2
7 0.891773 0 1 3
8 0.963663 0 2 0
9 0.383442 0 2 1
10 0.791725 0 2 2
11 0.528895 0 2 3
12 0.568045 1 0 0
13 0.925597 1 0 1
14 0.071036 1 0 2
15 0.087129 1 0 3
16 0.020218 1 1 0
17 0.832620 1 1 1
18 0.778157 1 1 2
19 0.870012 1 1 3
20 0.978618 1 2 0
21 0.799159 1 2 1
22 0.461479 1 2 2
23 0.780529 1 2 3
Upvotes: 3