Reputation: 43
I have a Dataframe obtained from a csv file (after some filtering) that looks like this:
df3.head(n = 10)
DateTime Det_ID Speed
16956 2014-01-01 07:00:00 1201085 65.0
16962 2014-01-01 07:00:00 1201110 69.5
19377 2014-01-01 08:00:00 1201085 65.0
19383 2014-01-01 08:00:00 1201110 65.0
21798 2014-01-01 09:00:00 1201085 65.0
21804 2014-01-01 09:00:00 1201110 65.4
75060 2014-01-02 07:00:00 1201085 64.9
75066 2014-01-02 07:00:00 1201110 66.1
77481 2014-01-02 08:00:00 1201085 65.0
77487 2014-01-02 08:00:00 1201110 62.5
This represents the speeds measured by different detectors (two for now) at various times of day. I have converted the DateTime column to a datetime object.
I need to know for each detector, the minimum daily value of the speed.
Basically, something like this, which I can then use to build a heat map.
df4 = df3.pivot_table(index='DateTime',columns='Det_ID',aggfunc=min)
df4.head()
Speed
Det_ID 1201085 1201110
DateTime
2014-01-01 07:00:00 65.0 69.5
2014-01-01 08:00:00 65.0 65.0
2014-01-01 09:00:00 65.0 65.4
2014-01-02 07:00:00 64.9 66.1
2014-01-02 08:00:00 65.0 62.5
Clearly, the way I've used the pivot table is incorrect as I'm getting multiple values of daily speeds, not just one. I suspect it is because the minimum is being calculated over each unique DateTime field, not just the for the date part.
Also trying groupby options.
list(df3.groupby(['DateTime'], sort = False)['Speed'].min())
But it just gives a list of numbers, without any other columns.
65.0,
65.0,
65.0,
64.900000000000006,
62.5,
64.200000000000003,
54.700000000000003,
62.600000000000001,
64.799999999999997,
59.5,
etc.
How do I isolate just the date part in the DateTime field? Am I even going in the right direction? Thanks.
Upvotes: 2
Views: 2141
Reputation: 323226
Or using unstack
df.DateTime = df.DateTime.dt.strftime('%m/%d/%Y')
df.groupby(['DateTime','Det_ID']).Speed.min().unstack()
Out[300]:
Det_ID 1201085 1201110
DateTime
01/01/2014 65.0 65.0
01/02/2014 64.9 62.5
Upvotes: 1
Reputation: 402483
Call .dt.strftime
and reformat your DateTime
column.
df.DateTime = df.DateTime.dt.strftime('%m/%d/%Y')
df
DateTime Det_ID Speed
16956 01/01/2014 1201085 65.0
16962 01/01/2014 1201110 69.5
19377 01/01/2014 1201085 65.0
19383 01/01/2014 1201110 65.0
21798 01/01/2014 1201085 65.0
21804 01/01/2014 1201110 65.4
75060 01/02/2014 1201085 64.9
75066 01/02/2014 1201110 66.1
77481 01/02/2014 1201085 65.0
77487 01/02/2014 1201110 62.5
Now, call pivot_table
:
df = df.pivot_table(index='DateTime', columns='Det_ID', values='Speed', aggfunc=np.min)
df
Det_ID 1201085 1201110
DateTime
01/01/2014 65.0 65.0
01/02/2014 64.9 62.5
Upvotes: 2