Reputation:
Let say I have this dataframe:
raw_data = {'regiment': ['Nighthawks', 'Nighthawks', 'Nighthawks', 'Nighthawks', 'Dragoons', 'Dragoons', 'Dragoons', 'Dragoons', 'Scouts', 'Scouts', 'Scouts', 'Scouts'],
'payout': [.1, .15, .2, .3, 1.2, 1.3, 1.45, 2, 2.04, 3.011, 3.45, 1],
'name': ['Miller', 'Jacobson', 'Ali', 'Milner', 'Cooze', 'Jacon', 'Ryaner', 'Sone', 'Sloan', 'Piger', 'Riani', 'Ali'],
'preTestScore': [4, 24, 31, 2, 3, 4, 24, 31, 2, 3, 2, 3],
'postTestScore': [25, 94, 57, 62, 70, 25, 94, 57, 62, 70, 62, 70]}
df = pd.DataFrame(raw_data, columns = ['regiment', 'payout', 'name', 'preTestScore', 'postTestScore'])
Now, I want to build these categories based on the column "payout":
Cat1 : 0 <= x <= 1
Cat2 : 1 < x <= 2
Cat3 : 2 < x <= 3
Cat4 : 3 < x <= 4
and build the sum of the column postTestscore
I do it this way, using the boolean indexing:
df.loc[(df['payout'] > 0) & (df['payout'] <= 1), 'postTestScore'].sum()
df.loc[(df['payout'] > 1) & (df['payout'] <= 2), 'postTestScore'].sum()
etc...
Well it works, but does anyone know a more succinct (pythonic) solution of this one?
Upvotes: 4
Views: 15275
Reputation: 863631
Create categories by cut
and then groupby
with aggregate sum:
bins = [0,1,2,3,4]
labels=['Cat{}'.format(x) for x in range(1, len(bins))]
binned = pd.cut(df['payout'], bins=bins, labels=labels)
print (binned)
0 Cat1
1 Cat1
2 Cat1
3 Cat1
4 Cat2
5 Cat2
6 Cat2
7 Cat2
8 Cat3
9 Cat4
10 Cat4
11 Cat1
Name: payout, dtype: category
Categories (4, object): [Cat1 < Cat2 < Cat3 < Cat4]
df1 = df.groupby(binned)['postTestScore'].sum().reset_index()
print (df1)
payout postTestScore
0 Cat1 308
1 Cat2 246
2 Cat3 62
3 Cat4 132
It is same one line solution:
df1 = df.groupby(pd.cut(df['payout'],
bins=[0,1,2,3,4],
labels=['Cat1','Cat2','Cat3','Cat4']))['postTestScore'].sum()
print (df1)
payout
Cat1 308
Cat2 246
Cat3 62
Cat4 132
Name: postTestScore, dtype: int64
Another very fast solution with numpy
:
labs = ['Cat{}'.format(x) for x in range(len(bins))]
a = np.array(labs)[np.array(bins).searchsorted(df['payout'].values)]
print (a)
['Cat1' 'Cat1' 'Cat1' 'Cat1' 'Cat2' 'Cat2' 'Cat2' 'Cat2' 'Cat3' 'Cat4'
'Cat4' 'Cat1']
df1 = df.groupby(a)['postTestScore'].sum().rename_axis('cats').reset_index()
print (df1)
cats postTestScore
0 Cat1 308
1 Cat2 246
2 Cat3 62
3 Cat4 132
Upvotes: 2
Reputation: 403168
Try pd.cut
with a groupby
:
df.groupby(pd.cut(df.payout, [0, 1, 2, 3, 4])).postTestScore.sum()
payout
(0, 1] 308
(1, 2] 246
(2, 3] 62
(3, 4] 132
Name: postTestScore, dtype: int64
Upvotes: 3