Reputation: 1197
Objective: to reformat the contents of a pandas dataframe based on what has been provided to me.
I have the following dataframe:
I am looking to change each column with the following style:
I am using the following code to produce the style I need, but it is not efficient:
lt = []
for i in patterns['Components'][0]:
for x in i.split('__'):
lt.append(x)
lt[1].replace('(','').replace(', ',' < '+str(lt[0])+' ≤ ').replace(']','')
I have attempted Pandas Replace to no avail - it throws no errors and seems to ignore what I am aiming to do.
Upvotes: 0
Views: 129
Reputation: 136
import pandas as pd
import re
data=pd.DataFrame({'components':
['(quantity__(0.0,16199.0])','(unitprice__(-1055.648,8494.557])'],'outcome':
['(unitprice__(-1055.648,8494.557])','quantity__(0.0,16199.0])']})
def func(x):
x=str(x)
x=x.split('__')
dx=x[0].replace("(",'')
mt=re.findall('\d*\.\d*',x[1])
return('{}<{}<={}'.format(dx,mt[0],mt[1]))
df=data.applymap(func)
print(df)
Upvotes: 0
Reputation: 210882
Source DF:
In [37]: df
Out[37]:
Components Outcome
0 (Quantity__(0.0, 16199.0]) (UnitPrice__(-1055.648, 3947.558])
1 (UnitPrice__(-1055.648, 3947.558]) (Quantity__(0.0, 16199.0])
Solution:
In [38]: cols = ['Components','Outcome']
...: df[cols] = df[cols].replace(r'\(([^_]*)__\(([^,\s]+),\s*([^\]]+)\]\).*',
...: r'\2 < \1 <= \3',
...: regex=True)
Result:
In [39]: df
Out[39]:
Components Outcome
0 0.0 < Quantity <= 16199.0 -1055.648 < UnitPrice <= 3947.558
1 -1055.648 < UnitPrice <= 3947.558 0.0 < Quantity <= 16199.0
UPDATE:
In [113]: df
Out[113]:
Components Outcome
0 (Quantity__(0.0, 16199.0]) (UnitPrice__(-1055.648, 3947.558])
1 (UnitPrice__(-1055.648, 3947.558]) (Quantity__(0.0, 16199.0])
In [114]: cols = ['Components','Outcome']
In [115]: pat = r'\s*\(([^_]*)__\(([^,\s]+),\s*([^\]]+)\]\)\s*'
In [116]: df[cols] = df[cols].replace(pat, r'\2 < \1 <= \3', regex=True)
In [117]: df
Out[117]:
Components Outcome
0 0.0 < Quantity <= 16199.0 -1055.648 < UnitPrice <= 3947.558
1 -1055.648 < UnitPrice <= 3947.558 0.0 < Quantity <= 16199.0
or witout parentheses:
In [119]: df
Out[119]:
Components Outcome
0 Quantity__(0.0, 16199.0]) UnitPrice__(-1055.648, 3947.558]
1 UnitPrice__(-1055.648, 3947.558] Quantity__(0.0, 16199.0]
In [120]: pat = r'([^_]*)__\(([^,\s]+),\s*([^\]]+)\]'
In [121]: df[cols] = df[cols].replace(pat, r'\2 < \1 <= \3', regex=True)
In [122]: df
Out[122]:
Components Outcome
0 0.0 < Quantity <= 16199.0) -1055.648 < UnitPrice <= 3947.558
1 -1055.648 < UnitPrice <= 3947.558 0.0 < Quantity <= 16199.0
Upvotes: 1