Reputation: 311
Is there a way to convert a timestamp value with nano seconds to timestamp in spark. I get the input from a csv file and the timstamp value is of format
12-12-2015 14:09:36.992415+01:00
. This is the code I tried.
val date_raw_data = List((1, "12-12-2015 14:09:36.992415+01:00"))
val dateraw_df = sc.parallelize(date_raw_data).toDF("ID", "TIMESTAMP_VALUE")
val ts = unix_timestamp($"TIMESTAMP_VALUE", "MM-dd-yyyy HH:mm:ss.ffffffz").cast("double").cast("timestamp")
val date_df = dateraw_df.withColumn("TIMESTAMP_CONV", ts).show(false)
The output is
+---+-----------------------+---------------------+
|ID |TIMESTAMP_VALUE |TIMESTAMP_CONV |
+---+-----------------------+---------------------+
|1 |12-12-2015 14:09:36.992|null |
+---+-----------------------+---------------------+
I was able to convert a time stamp with millisecond using format MM-dd-yyyy HH:mm:ss.SSS
. Trouble is with nano second and timezone formats.
Upvotes: 4
Views: 6652
Reputation: 4348
Here comes a dirty dirty trick without UDF to make this work if you don't care about nanoseconds. (I cannot use UDF where this is required, and cannot modify the source)
select CAST(UNIX_TIMESTAMP(substr(date,0,length(date)-4), "yyyy-MM-dd'T'HH:mm:ss.SSS") AS TIMESTAMP);
E.g.
select CAST(UNIX_TIMESTAMP(substr("2020-09-14T01:14:15.596444Z",0,length("2020-09-14T01:14:15.596444Z")-4), "yyyy-MM-dd'T'HH:mm:ss.SSS") AS TIMESTAMP);
I'm basically stripping the string out of it's nanoseconds part, and parsing the rest with the spark SimpleDateFormat compatible parser.
Please future employer, don't judge me by this reply.
Upvotes: 0
Reputation: 35229
unix_timestamp
won't do here. Even if you could parse the string (AFAIK SimpleDateFormat
doesn't provide required formats), unix_timestamp
has only second precision (emphasis mine):
def unix_timestamp(s: Column, p: String): Column
Convert time string with given pattern (see [http://docs.oracle.com/javase/tutorial/i18n/format/simpleDateFormat.html]) to Unix time stamp (in seconds), return null if fail.
You have to create your own function to parse this data. A rough idea:
import org.apache.spark.sql.functions._
import org.apache.spark.sql.Column
def to_nano(c: Column) = {
val r = "([0-9]{2}-[0-9]{2}-[0-9]{4} [0-9]{2}:[0-9]{2}:[0-9]{2})(\\.[0-9]*)(.*)$"
// seconds part
(unix_timestamp(
concat(
regexp_extract($"TIMESTAMP_VALUE", r, 1),
regexp_extract($"TIMESTAMP_VALUE", r, 3)
), "MM-dd-YYYY HH:mm:ssXXX"
).cast("decimal(38, 9)") +
// subsecond part
regexp_extract($"TIMESTAMP_VALUE", r, 2).cast("decimal(38, 9)")).alias("value")
}
Seq("12-12-2015 14:09:36.992415+01:00").toDF("TIMESTAMP_VALUE")
.select(to_nano($"TIMESTAMP_COLUMN").cast("timestamp"))
.show(false)
// +--------------------------+
// |value |
// +--------------------------+
// |2014-12-28 14:09:36.992415|
// +--------------------------+
Upvotes: 2