user48944
user48944

Reputation: 301

Find Most Common Value and Corresponding Count Using Spark Groupby Aggregates

I am trying to use Spark (Scala) dataframes to do groupby aggregates for mode and the corresponding count.

For example,

Suppose we have the following dataframe:

Category   Color   Number   Letter      
1        Red         4        A
1        Yellow      Null     B
3        Green       8        C
2        Blue        Null     A
1        Green       9        A
3        Green       8        B
3        Yellow      Null     C
2        Blue        9        B
3        Blue        8        B
1        Blue        Null     Null
1        Red         7        C
2        Green       Null     C
1        Yellow      7        Null
3        Red         Null     B

Now we want to group by Category, then Color, and then find the size of the grouping, count of number non-nulls, the total size of number, the mean of number, the mode of number, and the corresponding mode count. For letter I'd like the count of non-nulls and the corresponding mode and mode count (no mean since this is a string).

So the output would ideally be:

Category     Color     CountNumber(Non-Nulls)   Size   MeanNumber  ModeNumber ModeCountNumber   CountLetter(Non-Nulls)  ModeLetter   ModeCountLetter
1            Red       2                        2      5.5         4 (or 7) 
1            Yellow    1                        2      7           7     
1            Green     1                        1      9           9       
1            Blue      1                        1      -           -       
2            Blue      1                        2      9           9      etc 
2            Green     -                        1      -           -       
3            Green     2                        2      8           8       
3            Yellow    -                        1      -           -       
3            Blue      1                        1      8           8       
3            Red       -                        1      -           -       

This is easy to do for the count and mean but more tricky for everything else. Any advice would be appreciated.

Thanks.

Upvotes: 2

Views: 1866

Answers (1)

Tzach Zohar
Tzach Zohar

Reputation: 37832

As far as I know - there's no simple way to compute mode - you have to count the occurrences of each value and then join the result with the maximum (per key) of that result. The rest of the computations are rather straight-forward:

// count occurrences of each number in its category and color
val numberCounts = df.groupBy("Category", "Color", "Number").count().cache()

// compute modes for Number - joining counts with the maximum count per category and color:
val modeNumbers = numberCounts.as("base").join(numberCounts.groupBy("Category", "Color").agg(max("count") as "_max").as("max"),
  $"base.Category" === $"max.Category" and
  $"base.Color" === $"max.Color" and
  $"base.count" === $"max._max")
  .select($"base.Category", $"base.Color", $"base.Number", $"_max")
  .groupBy("Category", "Color")
  .agg(first($"Number", ignoreNulls = true) as "ModeNumber", first("_max") as "ModeCountNumber")
  .where($"ModeNumber".isNotNull)

// now compute Size, Count and Mean (simple) and join to add Mode:
val result = df.groupBy("Category", "Color").agg(
  count("Color") as "Size", // counting a key column -> includes nulls
  count("Number") as "CountNumber", // does not include nulls
  mean("Number") as "MeanNumber"
).join(modeNumbers, Seq("Category", "Color"), "left")

result.show()
// +--------+------+----+-----------+----------+----------+---------------+
// |Category| Color|Size|CountNumber|MeanNumber|ModeNumber|ModeCountNumber|
// +--------+------+----+-----------+----------+----------+---------------+
// |       3|Yellow|   1|          0|      null|      null|           null|
// |       1| Green|   1|          1|       9.0|         9|              1|
// |       1|   Red|   2|          2|       5.5|         7|              1|
// |       2| Green|   1|          0|      null|      null|           null|
// |       3|  Blue|   1|          1|       8.0|         8|              1|
// |       1|Yellow|   2|          1|       7.0|         7|              1|
// |       2|  Blue|   2|          1|       9.0|         9|              1|
// |       3| Green|   2|          2|       8.0|         8|              2|
// |       1|  Blue|   1|          0|      null|      null|           null|
// |       3|   Red|   1|          0|      null|      null|           null|
// +--------+------+----+-----------+----------+----------+---------------+

As you can imagine - this might be slow, as it has 4 groupBys and two joins - all requiring shuffles...

As for the Letter column statistics - I'm afraid you'll have to repeat this for that column separately and add another join.

Upvotes: 2

Related Questions