Reputation: 159
I use scala for spark, I want to update one column value in an RDD, my data format is like this:
[510116,8042,1,8298,20170907181326,1,3,lineno805]
[510116,8042,1,8152,20170907182101,1,3,lineno805]
[510116,8042,1,8154,20170907164311,1,3,lineno805]
[510116,8042,1,8069,20170907165031,1,3,lineno805]
[510116,8042,1,8061,20170907170254,1,3,lineno805]
[510116,8042,1,9906,20170907171417,1,3,lineno805]
[510116,8042,1,8295,20170907174734,1,3,lineno805]
my scala code is like this:
val getSerialRdd: RDD[Row]=……
I want to update the column which is contain data 20170907181326
, I wish the data like follow format:
[510116,8042,1,8298,2017090718,1,3,lineno805]
[510116,8042,1,8152,2017090718,1,3,lineno805]
[510116,8042,1,8154,2017090716,1,3,lineno805]
[510116,8042,1,8069,2017090716,1,3,lineno805]
[510116,8042,1,8061,2017090717,1,3,lineno805]
[510116,8042,1,9906,2017090717,1,3,lineno805]
[510116,8042,1,8295,2017090717,1,3,lineno805]
and output the RDD type like RDD[Row].
How I can do this?
Upvotes: 0
Views: 6052
Reputation: 3723
In some cases you might want to update a row with a schema
import org.apache.spark.sql.Row
import org.apache.spark.sql.catalyst.expressions.GenericRowWithSchema
def update(r: Row, i: Int, a: Any): Row = {
val s: Array[Any] = r
.toSeq
.toArray
.updated(i, a)
new GenericRowWithSchema(s, r.schema)
}
rdd.map(update(_)).show(false)
Upvotes: 3
Reputation: 214957
You can define an update
method like this to update a field in the Row:
import org.apache.spark.sql.Row
def update(r: Row): Row = {
val s = r.toSeq
Row.fromSeq((s.take(4) :+ s(4).asInstanceOf[String].take(10)) ++ s.drop(5))
}
rdd.map(update(_)).collect
//res13: Array[org.apache.spark.sql.Row] =
// Array([510116,8042,1,8298,2017090718,1,3,lineno805],
// [510116,8042,1,8152,2017090718,1,3,lineno805],
// [510116,8042,1,8154,2017090716,1,3,lineno805],
// [510116,8042,1,8069,2017090716,1,3,lineno805],
// [510116,8042,1,8061,2017090717,1,3,lineno805],
// [510116,8042,1,9906,2017090717,1,3,lineno805],
// [510116,8042,1,8295,2017090717,1,3,lineno805])
A simpler approach would be to use DataFrame API and the substring
function:
1) Create a data frame from the rdd:
val df = spark.createDataFrame(rdd, rdd.take(1)(0).schema)
// df: org.apache.spark.sql.DataFrame = [_c0: string, _c1: string ... 6 more fields]
2) use substring
to transform the column:
df.withColumn("_c4", substring($"_c4", 0, 10)).show
+------+----+---+----+----------+---+---+---------+
| _c0| _c1|_c2| _c3| _c4|_c5|_c6| _c7|
+------+----+---+----+----------+---+---+---------+
|510116|8042| 1|8298|2017090718| 1| 3|lineno805|
|510116|8042| 1|8152|2017090718| 1| 3|lineno805|
|510116|8042| 1|8154|2017090716| 1| 3|lineno805|
|510116|8042| 1|8069|2017090716| 1| 3|lineno805|
|510116|8042| 1|8061|2017090717| 1| 3|lineno805|
|510116|8042| 1|9906|2017090717| 1| 3|lineno805|
|510116|8042| 1|8295|2017090717| 1| 3|lineno805|
+------+----+---+----+----------+---+---+---------+
3) convert data frame to rdd is easy:
val getSerialRdd = df.withColumn("_c4", substring($"_c4", 0, 10)).rdd
Upvotes: 3