Reputation: 13
after a lot of searching I haven't been able to find the answer to what seems like a simple question.
I have some code that is doing a Monte Carlo simulation and storing the results in a nested list. Here are the results I generate from a 10-trial simulation:
[[1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1], [1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1], [0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1], [1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0], [1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1]]
Where I'm stuck is I'd like to find the mean of the 0th item in each list, the 1st item, and so on. I generally use numpy.mean for this, but how do I instruct it to only average the nth item?
Upvotes: 1
Views: 1617
Reputation: 521
If I understood the question well, the answer is the same as @Psidom proposed but over axis=1
. Also, you may need to convert it to a numpy array beforehand:
lst = np.array([[1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1],
[1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1], # and so on...)
np.mean(lst, axis=1)
Upvotes: 0
Reputation: 214957
You can use np.mean
with axis=0
:
lst = [[1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1], [1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1], [0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1], [1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0], [1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1]]
np.mean(lst, axis=0)
# array([ 0.9, 1. , 0.8, 0.9, 0.6, 0.8, 0.5, 0.7, 0.8, 0.5, 0.7, 0.5, 0.6])
Upvotes: 3