stackTracer
stackTracer

Reputation: 43

spark "package.TreeNodeException" error python "java.lang.RuntimeException: Couldn't find pythonUDF"

I'm using pySpark 2.1 on Databricks.

I've written a UDF to generate a unique uuid for each row of a pyspark dataframe. The dataframes I'm working with are relatively small < 10,000 rows. And should never grow beyond that.

I know that there are built-in functions spark functions zipWithIndex() and zipWithUniqueId() to generate row indices, but I've been asked specifically to use uuid's for this particular project.

The UDF udf_insert_uuid works fine on small data sets, but seems to be clashing with the built-in spark function subtract.

What's causing this error:

package.TreeNodeException: Binding attribute, tree: pythonUDF0#104830

Deeper in the driver stack errors it also says:

Caused by: java.lang.RuntimeException: Couldn't find pythonUDF0#104830

This is code I'm running below:

create a function to generate a set of unique_ids

import pandas
from pyspark.sql.functions import *
from pyspark.sql.types import *

import uuid

#define a python function
def insert_uuid():
  user_created_uuid = str( uuid.uuid1() )
  return user_created_uuid

#register the python function for use in dataframes
udf_insert_uuid = udf(insert_uuid, StringType())

create a dataframe with 50 elements

import pandas
from pyspark.sql.functions import *
from pyspark.sql.types import *

list_of_numbers = range(1000,1050)

temp_pandasDF = pandas.DataFrame(list_of_numbers, index=None)

sparkDF = (
  spark
  .createDataFrame(temp_pandasDF, ["data_points"])
  .withColumn("labels", when( col("data_points") < 1025, "a" ).otherwise("b"))    #if "values" < 25, then "labels" = "a", else "labels" = "b"
  .repartition("labels")
)

sparkDF.createOrReplaceTempView("temp_spark_table")

#add a unique id for each row
#udf works fine in the line of code here
sparkDF = sparkDF.withColumn("id", lit( udf_insert_uuid() ))

sparkDF.show(20, False)

ssparkDF output:

+-----------+------+------------------------------------+
|data_points|labels|id |
+-----------+------+------------------------------------+ 
|1029 |b |d3bb91e0-9cc8-11e7-9b70-00163e9986ba|
|1030 |b |d3bb95e6-9cc8-11e7-9b70-00163e9986ba|
|1035 |b |d3bb982a-9cc8-11e7-9b70-00163e9986ba|
|1036 |b |d3bb9a50-9cc8-11e7-9b70-00163e9986ba|
|1042 |b |d3bb9c6c-9cc8-11e7-9b70-00163e9986ba|
+-----------+------+------------------------------------+
only showing top 5 rows

create another DF with values different from sparkDF

list_of_numbers = range(1025,1075)

temp_pandasDF = pandas.DataFrame(list_of_numbers, index=None)

new_DF = (
  spark
  .createDataFrame(temp_pandasDF, ["data_points"])
  .withColumn("labels", when( col("data_points") < 1025, "a" ).otherwise("b"))    #if "values" < 25, then "labels" = "a", else "labels" = "b"
  .repartition("labels"))

new_DF.show(5, False)

new_DF output:

+-----------+------+
|data_points|labels|
+-----------+------+
|1029 |b |
|1030 |b |
|1035 |b |
|1036 |b |
|1042 |b | 
+-----------+------+
only showing top 5 rows

compare the values in new_DF with spark_DF

values_not_in_new_DF = (new_DF.subtract(sparkDF.drop("id")))

add the uuid to each row of the udf and display it

display(values_not_in_new_DF
       .withColumn("id", lit( udf_insert_uuid()))   #add a column of unique uuid's
       )

The following error results:

package.TreeNodeException: Binding attribute, tree: pythonUDF0#104830 org.apache.spark.sql.catalyst.errors.package$TreeNodeException: Binding attribute, tree: pythonUDF0#104830 at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:56) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:88) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:87) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:268) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$2.apply(TreeNode.scala:268) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:267) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:273) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformDown$1.apply(TreeNode.scala:273) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:307) at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:188) at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:305) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:273) at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:257) at org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReference(BoundAttribute.scala:87) at org.apache.spark.sql.execution.aggregate.HashAggregateExec$$anonfun$33.apply(HashAggregateExec.scala:473) at org.apache.spark.sql.execution.aggregate.HashAggregateExec$$anonfun$33.apply(HashAggregateExec.scala:472) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) at scala.collection.TraversableLike$class.map(TraversableLike.scala:244) at scala.collection.AbstractTraversable.map(Traversable.scala:105) at org.apache.spark.sql.execution.aggregate.HashAggregateExec.generateResultCode(HashAggregateExec.scala:472) at org.apache.spark.sql.execution.aggregate.HashAggregateExec.doProduceWithKeys(HashAggregateExec.scala:610) at org.apache.spark.sql.execution.aggregate.HashAggregateExec.doProduce(HashAggregateExec.scala:148) at org.apache.spark.sql.execution.CodegenSupport$$anonfun$produce$1.apply(WholeStageCodegenExec.scala:83) at org.apache.spark.sql.execution.CodegenSupport$$anonfun$produce$1.apply(WholeStageCodegenExec.scala:78) at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:135) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:132) at org.apache.spark.sql.execution.CodegenSupport$class.produce(WholeStageCodegenExec.scala:78) at org.apache.spark.sql.execution.aggregate.HashAggregateExec.produce(HashAggregateExec.scala:38) at org.apache.spark.sql.execution.WholeStageCodegenExec.doCodeGen(WholeStageCodegenExec.scala:313) at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:354) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:114) at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:114) at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:135) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:132) at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:113) at org.apache.spark.sql.execution.SparkPlan.getByteArrayRdd(SparkPlan.scala:225) at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:308) at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38) at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:2807) at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2132) at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2132) at org.apache.spark.sql.Dataset$$anonfun$60.apply(Dataset.scala:2791) at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:87) at org.apache.spark.sql.execution.SQLExecution$.withFileAccessAudit(SQLExecution.scala:53) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:70) at org.apache.spark.sql.Dataset.withAction(Dataset.scala:2790) at org.apache.spark.sql.Dataset.head(Dataset.scala:2132) at org.apache.spark.sql.Dataset.take(Dataset.scala:2345) at com.databricks.backend.daemon.driver.OutputAggregator$.withOutputAggregation0(OutputAggregator.scala:81) at com.databricks.backend.daemon.driver.OutputAggregator$.withOutputAggregation(OutputAggregator.scala:42) at com.databricks.backend.daemon.driver.PythonDriverLocal$$anonfun$getResultBuffer$1.apply(PythonDriverLocal.scala:461) at com.databricks.backend.daemon.driver.PythonDriverLocal$$anonfun$getResultBuffer$1.apply(PythonDriverLocal.scala:441) at com.databricks.backend.daemon.driver.PythonDriverLocal.withInterpLock(PythonDriverLocal.scala:394) at com.databricks.backend.daemon.driver.PythonDriverLocal.getResultBuffer(PythonDriverLocal.scala:441) at com.databricks.backend.daemon.driver.PythonDriverLocal.com$databricks$backend$daemon$driver$PythonDriverLocal$$outputSuccess(PythonDriverLocal.scala:428) at com.databricks.backend.daemon.driver.PythonDriverLocal$$anonfun$repl$3.apply(PythonDriverLocal.scala:178) at com.databricks.backend.daemon.driver.PythonDriverLocal$$anonfun$repl$3.apply(PythonDriverLocal.scala:175) at com.databricks.backend.daemon.driver.PythonDriverLocal.withInterpLock(PythonDriverLocal.scala:394) at com.databricks.backend.daemon.driver.PythonDriverLocal.repl(PythonDriverLocal.scala:175) at com.databricks.backend.daemon.driver.DriverLocal$$anonfun$execute$2.apply(DriverLocal.scala:230) at com.databricks.backend.daemon.driver.DriverLocal$$anonfun$execute$2.apply(DriverLocal.scala:211) at com.databricks.logging.UsageLogging$$anonfun$withAttributionContext$1.apply(UsageLogging.scala:173) at scala.util.DynamicVariable.withValue(DynamicVariable.scala:57) at com.databricks.logging.UsageLogging$class.withAttributionContext(UsageLogging.scala:168) at com.databricks.backend.daemon.driver.DriverLocal.withAttributionContext(DriverLocal.scala:39) at com.databricks.logging.UsageLogging$class.withAttributionTags(UsageLogging.scala:206) at com.databricks.backend.daemon.driver.DriverLocal.withAttributionTags(DriverLocal.scala:39) at com.databricks.backend.daemon.driver.DriverLocal.execute(DriverLocal.scala:211) at com.databricks.backend.daemon.driver.DriverWrapper$$anonfun$tryExecutingCommand$2.apply(DriverWrapper.scala:589) at com.databricks.backend.daemon.driver.DriverWrapper$$anonfun$tryExecutingCommand$2.apply(DriverWrapper.scala:589) at scala.util.Try$.apply(Try.scala:161) at com.databricks.backend.daemon.driver.DriverWrapper.tryExecutingCommand(DriverWrapper.scala:584) at com.databricks.backend.daemon.driver.DriverWrapper.executeCommand(DriverWrapper.scala:488) at com.databricks.backend.daemon.driver.DriverWrapper.runInnerLoop(DriverWrapper.scala:391) at com.databricks.backend.daemon.driver.DriverWrapper.runInner(DriverWrapper.scala:348) at com.databricks.backend.daemon.driver.DriverWrapper.run(DriverWrapper.scala:215) at java.lang.Thread.run(Thread.java:745) Caused by: java.lang.RuntimeException: Couldn't find pythonUDF0#104830 in [data_points#104799L,labels#104802] at scala.sys.package$.error(package.scala:27) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:94) at org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:88) at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:52) ... 82 more

Upvotes: 4

Views: 11752

Answers (1)

MaFF
MaFF

Reputation: 10086

I get the same error as you when I run your script. The only way I found to make it work is to pass the UDF a column instead of no argument:

def insert_uuid(col):
    user_created_uuid = str( uuid.uuid1() )
    return user_created_uuid
udf_insert_uuid = udf(insert_uuid, StringType())

and then call it on labels for instance:

values_not_in_new_DF\
    .withColumn("id", udf_insert_uuid("labels"))\
    .show()

no need to use lit

Upvotes: 2

Related Questions