Reputation: 1940
Consider following piece of code:
static constexpr size_t Num {2};
struct S {
std::array<size_t, Num> get () { return {1, 2}; }
};
struct S1 : S {};
struct S2 : S {};
struct M {
template <typename T>
typename std::enable_if<std::is_same<T, S1>::value, S1>::type get () const {
return S1 {};
}
template <typename T>
typename std::enable_if<std::is_same<T, S2>::value, S2>::type get () const {
return S2 {};
}
};
I want to have a function which merges two or more std::array
s making one std::array
.
So far I ended with something like this:
template <typename Mode, typename... Rs, size_t... Ns>
std::array<size_t, sizeof... (Rs)*Num> get_array (const Mode& mode, Sequence::Sequence<Ns...>) {
return {std::get<Ns> (mode.template get<Rs...> ().get ())...};
}
I want to have that the following code
M m;
auto x = get_array<M, S1, S2> (m, Sequence::Make<2> {});
produces std::array<size_t, 4>
filled with {1, 2, 1, 2}
.
Where Sequence::Sequence
and Sequence::Make
are described here.
I know that placing ...
of Rs
is incorrect in this context (If sizeof... (Rs)
is 1 then it is fine, std::array<size_t, 2>
with {1, 2}
is returned) but I have no idea where to put it to make expansion which looks like this:
std::get<0> (mode.template get<Rs[0]> ().get ()),
std::get<1> (mode.template get<Rs[0]> ().get ()),
std::get<0> (mode.template get<Rs[1]> ().get ()),
std::get<1> (mode.template get<Rs[1]> ().get ());
Of course Rs[0]
I mean first type from parameter pack.
Is it even possible?
Upvotes: 7
Views: 2213
Reputation: 137425
So here's for an arbitrary number of same-type arrays. We are basically implementing a highly restrictive version of tuple_cat
, made substantially easier because the number of elements in the arrays is the same. I make use of a couple C++14 and 17 library features that are all readily implementable in C++11.
template<class, size_t> struct div_sequence;
template<size_t...Is, size_t Divisor>
struct div_sequence<std::index_sequence<Is...>, Divisor>
{
using quot = std::index_sequence<Is / Divisor...>;
using rem = std::index_sequence<Is % Divisor...>;
};
template<class T, size_t...Ns, size_t...Is, class ToA>
std::array<T, sizeof...(Ns)> array_cat_impl(std::index_sequence<Ns...>,
std::index_sequence<Is...>,
ToA&& t)
{
// NB: get gives you perfect forwarding; [] doesn't.
return {std::get<Is>(std::get<Ns>(std::forward<ToA>(t)))... };
}
template<class Array, class... Arrays,
class VT = typename std::decay_t<Array>::value_type,
size_t S = std::tuple_size<std::decay_t<Array>>::value,
size_t N = S * (1 + sizeof...(Arrays))>
std::array<VT, N> array_cat(Array&& a1, Arrays&&... as)
{
static_assert(std::conjunction_v<std::is_same<std::decay_t<Array>,
std::decay_t<Arrays>>...
>, "Array type mismatch");
using ind_seq = typename div_sequence<std::make_index_sequence<N>, S>::rem;
using arr_seq = typename div_sequence<std::make_index_sequence<N>, S>::quot;
return array_cat_impl<VT>(arr_seq(), ind_seq(),
std::forward_as_tuple(std::forward<Array>(a1),
std::forward<Arrays>(as)...)
);
}
We can also reuse the tuple_cat
machinery, as in @Barry's answer. To sidestep potential QoI issues, avoid depending on extensions and also extra moves, we don't want to tuple_cat
std::array
s directly. Instead, we transform the array into a tuple of references first.
template<class TupleLike, size_t... Is>
auto as_tuple_ref(TupleLike&& t, std::index_sequence<Is...>)
-> decltype(std::forward_as_tuple(std::get<Is>(std::forward<TupleLike>(t))...))
{
return std::forward_as_tuple(std::get<Is>(std::forward<TupleLike>(t))...);
}
template<class TupleLike,
size_t S = std::tuple_size<std::decay_t<TupleLike>>::value >
auto as_tuple_ref(TupleLike&& t)
-> decltype(as_tuple_ref(std::forward<TupleLike>(t), std::make_index_sequence<S>()))
{
return as_tuple_ref(std::forward<TupleLike>(t), std::make_index_sequence<S>());
}
We can then transform the tuple_cat
'd references back into an array:
template <class R1, class...Rs, size_t... Is>
std::array<std::decay_t<R1>, sizeof...(Is)>
to_array(std::tuple<R1, Rs...> t, std::index_sequence<Is...>)
{
return { std::get<Is>(std::move(t))... };
}
template <class R1, class...Rs>
std::array<std::decay_t<R1>, sizeof...(Rs) + 1> to_array(std::tuple<R1, Rs...> t)
{
static_assert(std::conjunction_v<std::is_same<std::decay_t<R1>, std::decay_t<Rs>>...>,
"Array element type mismatch");
return to_array(t, std::make_index_sequence<sizeof...(Rs) + 1>());
}
Finally, array_cat
itself is just
template <class... Arrays>
auto array_cat(Arrays&&... arrays)
-> decltype(to_array(std::tuple_cat(as_tuple_ref(std::forward<Arrays>(arrays))...)))
{
return to_array(std::tuple_cat(as_tuple_ref(std::forward<Arrays>(arrays))...));
}
Any decent optimizer should have little difficulty optimizing the intermediate tuples of references away.
Upvotes: 1
Reputation: 303337
To start with, this is basically asking to concatenate an arbitrary number of arrays. Which is very similar to concatenate an arbitrary number of tuples, for which there is a standard library function, even in C++11: std::tuple_cat()
. That gets us almost there:
template <class... Ts, class M>
auto get_array(M m) -> decltype(std::tuple_cat(m.template get<Ts>()...)) {
return std::tuple_cat(m.template get<Ts>()...);
}
Note that I flipped the template parameters, so this is just get_array<T1, T2>(m)
instead of having to write get_array<M, T1, T2>(m)
.
Now the question is, how do we write array_cat
? We'll just use tuple_cat
and convert the resulting tuple
to an array
. Assume an implementation of index_sequence
is available (which is something you'll want in your collection anyway):
template <class T, class... Ts, size_t... Is>
std::array<T, sizeof...(Ts)+1> to_array_impl(std::tuple<T, Ts...>&& tup,
std::index_sequence<Is...> ) {
return {{std::get<Is>(std::move(tup))...}};
}
template <class T, class... Ts>
std::array<T, sizeof...(Ts)+1> to_array(std::tuple<T, Ts...>&& tup) {
return to_array_impl(std::move(tup), std::index_sequence_for<T, Ts...>());
}
template <class... Tuples>
auto array_cat(Tuples&&... tuples) -> decltype(to_array(std::tuple_cat(std::forward<Tuples>(tuples)...))) {
return to_array(std::tuple_cat(std::forward<Tuples>(tuples)...));
}
And that gives you:
template <class... Ts, class M>
auto get_array(M m) -> decltype(array_cat(m.template get<Ts>()...)) {
return array_cat(m.template get<Ts>()...);
}
which handles arbitrarily many types.
Upvotes: 2
Reputation: 17704
Yes, this can be done, with the standard index_sequence
tricks:
template <class T, std::size_t N1, std::size_t N2, std::size_t ... Is, std::size_t ... Js>
std::array<T, N1 + N2> merge_impl(const std::array<T, N1>& a1,
const std::array<T, N2>& a2,
std::index_sequence<Is...>,
std::index_sequence<Js...>) {
return {a1[Is]..., a2[Js]...};
}
template <class T, std::size_t N1, std::size_t N2>
std::array<T, N1 + N2> merge(const std::array<T, N1>& a1, const std::array<T, N2>& a2) {
return merge_impl(a1, a2,
std::make_index_sequence<N1>{},
std::make_index_sequence<N2>{});
}
index_sequence
is only in the 14 standard, but can be easily implemented in 11; there are many resources (including on SO) that describe how to do so (edit: it's basically equivalent to your Sequence
stuff, may as well get used to the standard names for them). Live example: http://coliru.stacked-crooked.com/a/54dce4a695357359.
Upvotes: 3
Reputation: 41110
Assuming that we're using Xeo's index sequence implementation, we can do something like this:
First create a function for concatenating two arrays. It receives the arrays, plus an index sequence for each one (detail::seq
is the index_sequence
type)
template<class T, size_t N, size_t M, size_t... I, size_t... J>
std::array<T, N + M> concat(const std::array<T, N>& arr1, const std::array<T, M>& arr2, detail::seq<I...>, detail::seq<J...>)
{
return {arr1[I]..., arr2[J]...};
}
Next, call this function from your get_array
function, except we're going to double the seq
that we received from the call in main
:
template<class MODE, class... T, size_t... I>
auto get_array(MODE m, detail::seq<I...>) ->decltype(concat(m.template get<T>().get()..., detail::seq<I...>{}, detail::seq<I...>{})){
return concat(m.template get<T>().get()..., detail::seq<I...>{}, detail::seq<I...>{});
}
The call in main
looks just like it did in your code:
M m;
auto x = get_array<M, S1, S2>(m, detail::gen_seq<2>{});
Where detail::gen_seq
is the implementation of make_index_sequence
that Xeo had.
Note that I replaced unsigned
with size_t
in Xeo's index sequence impl.
In C++14 we don't need to implement seq
or gen_seq
, and we also wouldn't need a trailing -> decltype()
after our function.
In C++17 it would be even easier to generalize our concatenation for an arbitrary number of arrays, using fold expressions.
Upvotes: 4