Anewks
Anewks

Reputation: 1

Issues fitting an exponential function

I'm having some serious issues fitting an exponential function (Beer-Lambert law) to my data. The optimization toolset function that I'm using produces terrible fits:

enter image description here

function [ Coefficients ] = fitting_new( Modified_Spectrum_Data,trajectory  )

x_axis = trajectory;
fun = @(x,x_axis) (x(1)*exp((-x(2))*x_axis));
start = [Modified_Spectrum_Data(1) 0.05];

nlm = nlinfit(x_axis,Modified_Spectrum_Data,fun,start,opts);

Coefficients = nlm;
end

Data:

Modified_Spectrum_Data = [1.11111111111111, 1.08784976353957, 1.06352170731165, 1.04099672033640, 1.02649723285838, 1.00423806910703, 0.994116452961827, 0.975928861361604, 0.963081773802984, 0.953191520906905, 0.940636278551651, 0.930360007604054, 0.922259178548511, 0.916659345499171, 0.909149956799775, 0.901241601559703, 0.895375741449218, 0.893308346234150, 0.887985459843162, 0.884657500398024, 0.883852990694089, 0.877158499678129, 0.874817832833850, 0.875428444059047, 0.873170360623947, 0.871461252768665, 0.867913776631497, 0.866459074988087, 0.863819528471106, 0.863228815347816 ,0.864369045426273 ,0.860602502500599, 0.862653463581049, 0.861169231463016, 0.858658616425390, 0.864588421841755, 0.858668693409622, 0.857993365648639]

trajectory = [0.0043, 0.9996, 2.0007, 2.9994, 3.9996, 4.9994, 5.9981, 6.9978, 7.9997, 8.9992, 10.0007, 10.9993, 11.9994, 12.9992, 14.0001, 14.9968, 15.9972, 16.9996, 17.9996, 18.999, 19.9992, 20.9996, 21.9994, 23.0003, 23.9992, 24.999, 25.9987, 26.9986, 27.999, 28.9991, 29.999, 30.9987, 31.9976, 32.9979, 33.9983, 34.9988, 35.999, 36.9991]

I've tried using multiple different fitting functions and messing around with the options, but they don't seem to make too big of a difference. Additionally, I've tried changing the initial guess, but again that doesn't really make a difference.

Excel seems to be able to fit the data perfectly fine, but I have 900 rows of data I want to fit so doing it in Excel is not possible.

Any help would be greatly appreciated, thank you.

Upvotes: 0

Views: 164

Answers (1)

kpg987
kpg987

Reputation: 486

You'll want to use the cftool. Your data looks to follow a power law. Then choose 'Modified Spectrum Data' as your x axis and 'Trajectory' as your y. Select 'Power' from the drop down menu towards the top of the GUI.

Modified_Spectrum_Data = [1.11111111111111, 1.08784976353957, 1.06352170731165, 1.04099672033640, 1.02649723285838, 1.00423806910703, 0.994116452961827, 0.975928861361604, 0.963081773802984, 0.953191520906905, 0.940636278551651, 0.930360007604054, 0.922259178548511, 0.916659345499171, 0.909149956799775, 0.901241601559703, 0.895375741449218, 0.893308346234150, 0.887985459843162, 0.884657500398024, 0.883852990694089, 0.877158499678129, 0.874817832833850, 0.875428444059047, 0.873170360623947, 0.871461252768665, 0.867913776631497, 0.866459074988087, 0.863819528471106, 0.863228815347816 ,0.864369045426273 ,0.860602502500599, 0.862653463581049, 0.861169231463016, 0.858658616425390, 0.864588421841755, 0.858668693409622, 0.857993365648639]

trajectory = [0.0043, 0.9996, 2.0007, 2.9994, 3.9996, 4.9994, 5.9981, 6.9978, 7.9997, 8.9992, 10.0007, 10.9993, 11.9994, 12.9992, 14.0001, 14.9968, 15.9972, 16.9996, 17.9996, 18.999, 19.9992, 20.9996, 21.9994, 23.0003, 23.9992, 24.999, 25.9987, 26.9986, 27.999, 28.9991, 29.999, 30.9987, 31.9976, 32.9979, 33.9983, 34.9988, 35.999, 36.9991]

cftool

Screenshot:enter image description here

For more information on the curve fitting (cftool), see: https://www.mathworks.com/help/curvefit/curvefitting-app.html

Upvotes: 1

Related Questions