Reputation: 3270
I want to type-check Pandas DataFrames i.e. I want to specify which column labels a DataFrame must have and what kind of data type (dtype
) is stored in them. A crude implementation (inspired by this question) would work like this:
from collections import namedtuple
Col = namedtuple('Col', 'label, type')
def dataframe_check(*specification):
def check_accepts(f):
assert len(specification) <= f.__code__.co_argcount
def new_f(*args, **kwds):
for (df, specs) in zip(args, specification):
spec_columns = [spec.label for spec in specs]
assert (df.columns == spec_columns).all(), \
'Columns dont match specs {}'.format(spec_columns)
spec_dtypes = [spec.type for spec in specs]
assert (df.dtypes == spec_dtypes).all(), \
'Dtypes dont match specs {}'.format(spec_dtypes)
return f(*args, **kwds)
new_f.__name__ = f.__name__
return new_f
return check_accepts
I don't mind the complexity of the checking function but it adds a lot of boilerplate code.
@dataframe_check([Col('a', int), Col('b', int)], # df1
[Col('a', int), Col('b', float)],) # df2
def f(df1, df2):
return df1 + df2
f(df, df)
Is there a more Pythonic way of type-checking DataFrames? Something that looks more like the new Python 3.6 static type-checking?
Is it possible to implement it in mypy?
Upvotes: 8
Views: 6260
Reputation: 1940
Try pandera
. It's powerful and easy to add.
Example:
from pandera import Field, SchemaModel, check_types
from pandera.typing import DataFrame, Index, Series, Float64
class RawPriceSchema(SchemaModel):
index: Index[int] = Field(unique=True)
symbol: Series[str]
price: Series[Float64] = Field(nullable=True)
RawPrice = DataFrame[RawPriceSchema]
# ...
@check_types
def foo(price: RawPrice):
...
A more detailed example in this demo repo and in this video
Upvotes: 0
Reputation: 671
Perhaps not the most pythonic way, but using a dict for your specs might do the trick (with keys as column names and values as data types):
import pandas as pd
df = pd.DataFrame(columns=['col1', 'col2'])
df['col1'] = df['col1'].astype('int')
df['col2'] = df['col2'].astype('str')
cols_dtypes_req = {'col1':'int', 'col2':'object'} #'str' dtype is 'object' in pandas
def check_df(dataframe, specs):
for colname in specs:
if colname not in dataframe:
return 'Column missing.'
elif dataframe[colname].dtype != specs[colname]:
return 'Data type incorrect.'
for dfcol in dataframe:
if dfcol not in specs:
return 'Unexpected dataframe column.'
return 'Dataframe meets specifications.'
print(check_df(df, cols_dtypes_req))
Upvotes: 2