Reputation: 230
I'm currently working on a piece of code, which should wait for a comparator interrupt and execute some other code after a set amount of time. Now, I thought using Timer2 in CTC mode would be a good idea to make sure that the program waits for the right amount of time and came up with this:
void setup(){
...
// Set up the timer
TCCR2A = 0;
TCCR2B = 0;
TCNT2 = 0;
OCR2A = 255; // compare match register
TCCR2A = (1 << WGM21); // CTC mode
TCCR2B = ((1 << CS22) | (1 << CS21)); // 256 prescaler
TIMSK2 &= ~(1 << OCIE2A); // disable interrupt
}
ISR(ANALOG_COMP_vect) {
// switchTime is in µs, usual value: around 500µs
// with a 16 Mhz crystal and a 256 prescale we need to devide
// the switchTime by 16 (2^4)
OCR2A = switchTime >> 4;
TCNT2 = 0; // reset counter
TIMSK2 |= (1 << OCIE2A); // enable timer compare interrupt
}
ISR(TIMER2_COMPA_vect) {
TIMSK2 &= ~(1 << OCIE2A); // disable interrupt
// do stuff
}
The awkward thing is, it doesn't work. The ISR timer is immediately called after we leave the ISR comparator (I checked this by toggling a pin in both routines and measuring with an oscilloscope). After a few hours of reading datasheets and randomly changing the code I came up with a line of code that fixed it:
ISR(TIMER2_COMPA_vect) {
TIMSK2 &= ~(1 << OCIE2A); // disable interrupt
OCR2A = 255; // <- apparently fixes all my problems
// do stuff
}
I'm quite confused about this because the frequency of the timer shouldn't be a matter after we call the routine and deactivate the interrupt.
Now I'm quite glad that I've found the solution but I want to know why it works. Something about knowing how to fish and accidentally catching a fish by randomly inserting code.
Upvotes: 1
Views: 530
Reputation: 176
I think you missed the clearing of pending timer interrupts.
ISR(TIMER2_COMPA_vect) {
TIMSK2 &= ~(1 << OCIE2A); // disable interrupt
/* Clear pending interrupts */
TIFR2 = (1 << TOV2) | (1 << OCF2A) | (1 << OCF2B);
// do stuff
}
Upvotes: 1