Reputation: 1037
I have this code that works for binary classification. I have tested it for keras imdb dataset.
model = Sequential()
model.add(Embedding(5000, 32, input_length=500))
model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
print(model.summary())
model.fit(X_train, y_train, epochs=3, batch_size=64)
# Final evaluation of the model
scores = model.evaluate(X_test, y_test, verbose=0)
I need the above code to be converted for multi-class classification where there are 7 categories in total. What I understand after reading few articles to convert above code I have to change
model.add(Dense(7, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
Obviously changing just above two lines doesn't work. What else do I have to change to make the code work for multiclass classification. Also I think I have to change the classes to one hot encoding but don't know how in keras.
Upvotes: 6
Views: 10908
Reputation: 3972
Yes, you need one hot target, you can use to_categorical
to encode your target or a short way:
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
here is the full code:
from keras.models import Sequential
from keras.layers import *
model = Sequential()
model.add(Embedding(5000, 32, input_length=500))
model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(7, activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.summary()
Summary
Using TensorFlow backend.
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding_1 (Embedding) (None, 500, 32) 160000
_________________________________________________________________
lstm_1 (LSTM) (None, 100) 53200
_________________________________________________________________
dense_1 (Dense) (None, 7) 707
=================================================================
Total params: 213,907
Trainable params: 213,907
Non-trainable params: 0
_________________________________________________________________
Upvotes: 10