Reputation: 146
I am just getting started with competitive programming and after writing the solution to certain problem i got the error of RUNTIME exceeded.
Where a is a list of elements and i,j are index i need to get the max() of the above expression.
Here is a short but complete code snippet.
t = int(input()) # Number of test cases
for i in range(t):
n = int(input()) #size of list
a = list(map(int, str(input()).split())) # getting space separated input
res = []
for s in range(n): # These two loops are increasing the run-time
for d in range(n):
res.append(abs(a[s] - a[d]) + abs(s - d))
print(max(res))
Input File This link may expire(Hope it works)
Run-time on leader-board for C language is 5sec and that for Python is 35sec while this code takes 80sec.
It is an online judge so independent on machine.numpy is not available.
Please keep it simple i am new to python.
Thanks for reading.
Upvotes: 0
Views: 204
Reputation: 58221
For a given j<=i
, |a[i]-a[j]|+|i-j| = max(a[i]-a[j]+i-j, a[j]-a[i]+i-j)
.
Thus for a given i
, the value of j<=i
that maximizes |a[i]-a[j]|+|i-j|
is either the j
that maximizes a[j]-j
or the j
that minimizes a[j]+j
.
Both these values can be computed as you run along the array, giving a simple O(n) algorithm:
def maxdiff(xs):
mp = mn = xs[0]
best = 0
for i, x in enumerate(xs):
mp = max(mp, x-i)
mn = min(mn, x+i)
best = max(best, x+i-mn, -x+i+mp)
return best
And here's some simple testing against a naive but obviously correct algorithm:
def maxdiff_naive(xs):
best = 0
for i in xrange(len(xs)):
for j in xrange(i+1):
best = max(best, abs(xs[i]-xs[j]) + abs(i-j))
return best
import random
for _ in xrange(500):
r = [random.randrange(1000) for _ in xrange(50)]
md1 = maxdiff(r)
md2 = maxdiff_naive(r)
if md1 != md2:
print "%d != %d\n%s" % (md1, md2, r)
exit
It takes a fraction of a second to run maxdiff
on an array of size 10^5, which is significantly better than your reported leaderboard scores.
Upvotes: 1
Reputation: 50190
"Competitive programming" is not about saving a few milliseconds by using a different kind of loop; it's about being smart about how you approach a problem, and then implementing the solution efficiently.
Still, one thing that jumps out is that you are wasting time building a list only to scan it to find the max. Your double loop can be transformed to the following (ignoring other possible improvements):
print(max(abs(a[s] - a[d]) + abs(s - d) for s in range(n) for d in range(n)))
But that's small fry. Worry about your algorithm first, and then turn to even obvious time-wasters like this. You can cut the number of comparisons to half, as @Brett showed you, but I would first study the problem and ask myself: Do I really need to calculate this quantity n^2
times, or even 0.5*n^2
times? That's how you get the times down, not by shaving off milliseconds.
Upvotes: 1