Reputation: 1082
I have multiple training and testing dataframes.
Example: train1,train2,train3 till train10. Same for test.
I would like to iterate over these dataframes, something like: (PS: Code is wrong but to give you idea): I don't want to concatenate them into one.
for i in range(1,10):
y%i = train%i['Labels']
X%i = train%i.drop('Labels',axis=1)
clf.fit(X%i,y%i)
output%i = clf.predict(test%i)
Can it be done?
Upvotes: 0
Views: 167
Reputation: 323306
Try this ... also , I do not think you need restore the middle variable like X,Y
variables = locals()
for i in list(range(1,11)):
variables["y{0}".format(i)]= variables["train{0}".format(i)]['Labels']
variables["x{0}".format(i)]= variables["train{0}".format(i)].drop('Labels',1)
clf.fit(variables["x{0}".format(i)], variables["y{0}".format(i)])
variables["output{0}".format(i)]= clf.predict(variables["x{0}".format(i)], variables["y{0}".format(i)])
What I will do
variables = locals()
for i in list(range(1,11)):
y= variables["train{0}".format(i)]['Labels']
x= variables["train{0}".format(i)].drop('Labels',1)
clf.fit(x,y)
variables["output{0}".format(i)]= clf.predict(x,y)
Upvotes: 1