Reputation: 1245
I have the following numpy row matrix.
X = np.array([1,2,3])
I want to create a block matrix as follows:
1 0 0
2 1 0
3 2 1
0 3 2
0 0 3
How can I do this using numpy?
Upvotes: 2
Views: 187
Reputation: 18658
An other writable solution :
def block(X):
n=X.size
zeros=np.zeros((2*n-1,n),X.dtype)
zeros[::2]=X
return zeros.reshape(n,-1).T
try :
In [2]: %timeit block(X)
600 µs ± 33 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Upvotes: 1
Reputation: 221614
Approach #1 : Using np.lib.stride_tricks.as_strided
-
from numpy.lib.stride_tricks import as_strided as strided
def zeropad_arr_v1(X):
n = len(X)
z = np.zeros(len(X)-1,dtype=X.dtype)
X_ext = np.concatenate(( z, X, z))
s = X_ext.strides[0]
return strided(X_ext[n-1:], (2*n-1,n), (s,-s), writeable=False)
Note that this would create a read-only
output. If you need to write into later on, simply make a copy by appending .copy()
at the end.
Approach #2 : Using concatenation with zeros and then clipping/slicing -
def zeropad_arr_v2(X):
n = len(X)
X_ext = np.concatenate((X, np.zeros(n,dtype=X.dtype)))
return np.tile(X_ext, n)[:-n].reshape(-1,n,order='F')
Approach #1 being a strides-based method should be very efficient on performance.
Sample runs -
In [559]: X = np.array([1,2,3])
In [560]: zeropad_arr_v1(X)
Out[560]:
array([[1, 0, 0],
[2, 1, 0],
[3, 2, 1],
[0, 3, 2],
[0, 0, 3]])
In [561]: zeropad_arr_v2(X)
Out[561]:
array([[1, 0, 0],
[2, 1, 0],
[3, 2, 1],
[0, 3, 2],
[0, 0, 3]])
Runtime test
In [611]: X = np.random.randint(0,9,(1000))
# Approach #1 (read-only)
In [612]: %timeit zeropad_arr_v1(X)
100000 loops, best of 3: 8.74 µs per loop
# Approach #1 (writable)
In [613]: %timeit zeropad_arr_v1(X).copy()
1000 loops, best of 3: 1.05 ms per loop
# Approach #2
In [614]: %timeit zeropad_arr_v2(X)
1000 loops, best of 3: 705 µs per loop
# @user8153's solution
In [615]: %timeit hstack_app(X)
100 loops, best of 3: 2.26 ms per loop
Upvotes: 1
Reputation: 4095
If you read the desired output matrix top-down, then left-right, you see the pattern 1,2,3, 0,0,0, 1,2,3, 0,0,0, 1,2,3. You can use that pattern to easily create a linear array, and then reshape it into the two-dimensional form:
import numpy as np
X = np.array([1,2,3])
N = len(X)
zeros = np.zeros_like(X)
m = np.hstack((np.tile(np.hstack((X,zeros)),N-1),X)).reshape(N,-1).T
print m
gives
[[1 0 0]
[2 1 0]
[3 2 1]
[0 3 2]
[0 0 3]]
Upvotes: 2