Reputation: 4623
I have a dataframe as below
df = pd.DataFrame({'a':[1,1,1,2,2,2],
'b': [10, 20, 30, 20, 40, 60],
'c': [80, 80, 80, 120, 120, 120]})
I want to get 3D array
array([[[ 1, 10, 80],
[ 2, 20, 120] ],
[[ 1, 20, 80] ,
[ 2, 40, 120] ],
[[ 1, 30, 80],
[ 2, 60, 120]]], dtype=int64)
I do like this
values = df.values
values.reshape(3, 2, 3)
and get an incorrect array. How to get the expected array?
Upvotes: 2
Views: 1900
Reputation: 221574
Get the array data, then reshape splitting the first axis into two with the first of them being of length 2
giving us a 3D
array and then swap those two axes -
df.values.reshape(2,-1,df.shape[1]).swapaxes(0,1)
Sample run -
In [711]: df
Out[711]:
a b c
0 1 10 80
1 1 20 80
2 1 30 80
3 2 20 120
4 2 40 120
5 2 60 120
In [713]: df.values.reshape(2,-1,df.shape[1]).swapaxes(0,1)
Out[713]:
array([[[ 1, 10, 80],
[ 2, 20, 120]],
[[ 1, 20, 80],
[ 2, 40, 120]],
[[ 1, 30, 80],
[ 2, 60, 120]]])
This gives us a view into the original data without making a copy and as such has a minimal constant time.
Runtime test
Case #1 :
In [730]: df = pd.DataFrame(np.random.randint(0,9,(2000,100)))
# @cᴏʟᴅsᴘᴇᴇᴅ's soln
In [731]: %timeit np.stack(np.split(df.values, 2), axis=1)
10000 loops, best of 3: 109 µs per loop
In [732]: %timeit df.values.reshape(2,-1,df.shape[1]).swapaxes(0,1)
100000 loops, best of 3: 8.55 µs per loop
Case #2 :
In [733]: df = pd.DataFrame(np.random.randint(0,9,(2000,2000)))
# @cᴏʟᴅsᴘᴇᴇᴅ's soln
In [734]: %timeit np.stack(np.split(df.values, 2), axis=1)
100 loops, best of 3: 4.3 ms per loop
In [735]: %timeit df.values.reshape(2,-1,df.shape[1]).swapaxes(0,1)
100000 loops, best of 3: 8.37 µs per loop
Upvotes: 4
Reputation: 402493
Try np.split
+ np.stack
:
np.stack(np.split(df.values, 2), axis=1)
array([[[ 1, 10, 80],
[ 2, 20, 120]],
[[ 1, 20, 80],
[ 2, 40, 120]],
[[ 1, 30, 80],
[ 2, 60, 120]]])
Upvotes: 3