Reputation: 757
I'm trying to insert into a numpy matrix given a mask that defines a single cell per row. Effectively, it's inserting a value into each row but with a different column. I've tried to use np.insert()
without success:
>>> x
array([[False, False, True, False, False],
[False, False, True, False, False],
[False, False, True, False, False],
[False, False, True, False, False],
[False, False, True, False, False]], dtype=bool)
>>> y = np.arange(25).reshape(5,5)
>>> y
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])
>>> np.insert(y, np.where(x)[1], 99, axis=1)
array([[ 0, 1, 99, 99, 99, 99, 99, 2, 3, 4],
[ 5, 6, 99, 99, 99, 99, 99, 7, 8, 9],
[10, 11, 99, 99, 99, 99, 99, 12, 13, 14],
[15, 16, 99, 99, 99, 99, 99, 17, 18, 19],
[20, 21, 99, 99, 99, 99, 99, 22, 23, 24]])
Anytime I try and insert based on the x
mask, it ends up duplicating values.
Also as noted, the mask may potentially be setup in a way that it's not a simple column. For example:
>>> x = np.zeros((5, 5), dtype=bool)
>>> x[1:, 2] = True
>>> x[0, 1] = True
>>> x
array([[False, True, False, False, False],
[False, False, True, False, False],
[False, False, True, False, False],
[False, False, True, False, False],
[False, False, True, False, False]], dtype=bool)
Which then means I can't simply specify a particular column as the index to insert at:
>>> np.insert(y, 2, [99, 99, 99, 99, 99], axis=1)
array([[ 0, 1, 99, 2, 3, 4],
[ 5, 6, 99, 7, 8, 9],
[10, 11, 99, 12, 13, 14],
[15, 16, 99, 17, 18, 19],
[20, 21, 99, 22, 23, 24]])
The desired output would be:
array([[ 0, 99, 1, 2, 3, 4],
[ 5, 6, 99, 7, 8, 9],
[10, 11, 99, 12, 13, 14],
[15, 16, 99, 17, 18, 19],
[20, 21, 99, 22, 23, 24]])
Any help would be greatly appreciated!
Upvotes: 1
Views: 1466
Reputation: 221564
Approach #1 : Here's one way with boolean-indexing
-
def insert_one_per_row(arr, mask, putval):
mask_ext = np.column_stack((mask, np.zeros((len(mask),1),dtype=bool)))
out = np.empty(mask_ext.shape, dtype=arr.dtype)
out[~mask_ext] = arr.ravel()
out[mask_ext] = putval
return out
Sample run -
In [88]: y
Out[88]:
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])
In [89]: x
Out[89]:
array([[False, True, False, False, False],
[False, False, True, False, False],
[False, False, False, False, True],
[ True, False, False, False, False],
[False, False, True, False, False]], dtype=bool)
In [90]: insert_one_per_row(y, x, putval=99)
Out[90]:
array([[ 0, 99, 1, 2, 3, 4],
[ 5, 6, 99, 7, 8, 9],
[10, 11, 12, 13, 99, 14],
[99, 15, 16, 17, 18, 19],
[20, 21, 99, 22, 23, 24]])
We can also assign different values per row -
In [91]: insert_one_per_row(y, x, putval=[-1,-2,-3,-4,-5])
Out[91]:
array([[ 0, -1, 1, 2, 3, 4],
[ 5, 6, -2, 7, 8, 9],
[10, 11, 12, 13, -3, 14],
[-4, 15, 16, 17, 18, 19],
[20, 21, -5, 22, 23, 24]])
Approach #2 : We will get the flattened True
places on the mask and insert the new values with np.insert
on a flattened version of the input array at those places, like so -
def insert_one_per_row_v2(arr, mask, putval):
idx = np.flatnonzero(mask)
return np.insert(arr.ravel(), idx, putval).reshape(arr.shape[0],-1)
Upvotes: 2
Reputation: 2011
Actually, you could use np.where
np.where(x, np.full_like(y, 99), y)
And here is the output:
In [9]: x
Out[9]:
array([[False, True, False, False, False],
[False, False, True, False, False],
[False, False, True, False, False],
[False, False, True, False, False],
[False, False, True, False, False]], dtype=bool)
In [10]: y
Out[10]:
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])
In [11]: np.where(x, np.full_like(y, 99), y)
Out[11]:
array([[ 0, 99, 2, 3, 4],
[ 5, 6, 99, 8, 9],
[10, 11, 99, 13, 14],
[15, 16, 99, 18, 19],
[20, 21, 99, 23, 24]])
Thanks
Upvotes: 0