Reputation: 311
I'm trying to perform a convolution (conv2d
) on images of variable dimensions. I have those images in form of an 1-D array and I want to perform a convolution on them, but I have a lot of troubles with the shapes.
This is my code of the conv2d
:
tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')
where x
is the input image.
The error is:
ValueError: Shape must be rank 4 but is rank 1 for 'Conv2D' (op: 'Conv2D') with input shapes: [1], [5,5,1,32].
I think I might reshape x
, but I don't know the right dimensions. When I try this code:
x = tf.reshape(self.x, shape=[-1, 5, 5, 1]) # example
I get this:
ValueError: Dimension size must be evenly divisible by 25 but is 1 for 'Reshape' (op: 'Reshape') with input shapes: [1], [4] and with input tensors computed as partial shapes: input[1] = [?,5,5,1].
Upvotes: 2
Views: 830
Reputation: 53758
You can't use conv2d
with a tensor of rank 1. Here's the description from the doc:
Computes a 2-D convolution given 4-D input and filter tensors.
These four dimensions are [batch, height, width, channels]
(as Engineero already wrote).
If you don't know the dimensions of the image in advance, tensorflow allows to provide a dynamic shape:
x = tf.placeholder(tf.float32, shape=[None, None, None, 3], name='x')
with tf.Session() as session:
print session.run(x, feed_dict={x: data})
In this example, a 4-D tensor x
is created, but only the number of channels is known statically (3), everything else is determined on runtime. So you can pass this x
into conv2d
, even if the size is dynamic.
But there's another problem. You didn't say your task, but if you're building a convolutional neural network, I'm afraid, you'll need to know the size of the input to determine the size of FC layer after all pooling operations - this size must be static. If this is the case, I think the best solution is actually to scale your inputs to a common size before passing it into a convolutional network.
UPD:
Since it wasn't clear, here's how you can reshape any image into 4-D array.
a = np.zeros([50, 178, 3])
shape = a.shape
print shape # prints (50, 178, 3)
a = a.reshape([1] + list(shape))
print a.shape # prints (1, 50, 178, 3)
Upvotes: 3