Reputation: 5068
I have a data table where the several (but not all) columns are factors:
df = read.table(text = "
date stock ret DivYield PB ROE
1 2017-06-30 AAPL 0.05 0.050 12 0.10
2 2017-06-30 GOOG 0.25 0.055 11 0.12
3 2017-06-30 MSFT -0.3 0.020 16 0.12
4 2017-07-31 AAPL -.02 0.055 11 0.10
5 2017-07-31 GOOG 0.25 0.050 12 0.10
6 2017-07-31 MSFT 0.01 0.025 14 0.12
", header = TRUE)
I want to multiply the last three columns (my "factor" columns) by weights and sum them together to calculate a z-score:
factor.weights = c(0.3, 0.45, 0.25)
names(factor.weights) = c("DivYield", "PB", "ROE")
The result should look something like this:
date stock ret z.score
1 2017-06-30 AAPL 0.05 5.4400
2 2017-06-30 GOOG 0.25 4.9965
3 2017-06-30 MSFT -0.30 7.2360
4 2017-07-31 AAPL -0.02 4.9915
5 2017-07-31 GOOG 0.25 5.4400
6 2017-07-31 MSFT 0.01 6.3375
I obtained the above by going
df.answer = data.frame(date = df$date, stock = df$stock, ret = df$ret,
z.score = df$DivYield * factor.weights["DivYield"] +
df$PB * factor.weights["PB"] +
df$ROE * factor.weights["ROE"])
But I need something more clever since my true data has dozens of columns, and I determine the factor.weights
programmatically.
Any ideas on how to do this kind of matrix multiplication on just a select few columns?
Upvotes: 0
Views: 970
Reputation: 469
You need to transpose your df then multiply by your factor.weights and then transpose again the result. As follows:
df$z.score <- rowSums(t(t(df[,4:6]) * factor.weights))
Upvotes: 1
Reputation: 4841
Here is a solution using base
R
> factor.weights = c(0.3, 0.45, 0.25)
> names(factor.weights) = c("DivYield", "PB", "ROE")
>
> # With base R
> df$answer <- as.matrix(df[names(factor.weights)]) %*% factor.weights
> df[, setdiff(colnames(df), setdiff(names(factor.weights), "ret"))]
date stock ret answer
1 2017-06-30 AAPL 0.05 5.4400
2 2017-06-30 GOOG 0.25 4.9965
3 2017-06-30 MSFT -0.30 7.2360
4 2017-07-31 AAPL -0.02 4.9915
5 2017-07-31 GOOG 0.25 5.4400
6 2017-07-31 MSFT 0.01 6.3375
Upvotes: 3