Reputation: 1491
I have a tensor A
with the shape of [#batch, #MaxSequence, #Features]
, where the actual lengths of the 2nd dimension (may be less than #MaxSequence
) are stored in a tensor L
. I want to sort A
by the 2nd feature in the 3rd dimension on the sequence in each batch. I saw this post using tf.gather
and tf.nn.top_k
to sort a 2D tensor, but I don't know to apply it on the 3D case. Do I need to use loop to do it?
Upvotes: 3
Views: 1741
Reputation: 16114
I have something working but it might exist better solutions. I guess my code is probably over-complicated for this simple problem.
The idea is that, we have to convert the return indices of tf.nn.top_k(a[:,:,1].indices
(order by the second feature in the third dimension) to something tf.gather_nd
can use. Particularly for my example below, we need to convert a tensor of
[[3, 2, 1, 0],
[0, 1, 2, 3],
[2, 0, 3, 1]]
to
[[[0 3], [0 2], [0 1], [0 0]]
[[1 0], [1 1], [1 2], [1 3]]
[[2 2], [2 0], [2 3], [2 1]]]
What I figured out:
[3 2 1 0 0 1 2 3 2 0 3 1]
.[0 0 0 0 1 1 1 1 2 2 2]
tf.stack
the above two vectors and then we reshape the result into what it is desired to be.The complete tf code is below (get_shape
method is defined here):
import tensorflow as tf
a = tf.Variable([[[0.51, 0.52, 0.53, 0.94, 0.35],
[0.32, 0.72, 0.83, 0.74, 0.55],
[0.23, 0.73, 0.63, 0.64, 0.35],
[0.01, 0.74, 0.73, 0.04, 0.75]],
[[0.32, 0.76, 0.83, 0.74, 0.55],
[0.23, 0.72, 0.63, 0.64, 0.35],
[0.11, 0.02, 0.03, 0.14, 0.15],
[0.01, 0.00, 0.73, 0.04, 0.75]],
[[0.51, 0.52, 0.53, 0.94, 0.35],
[0.32, 0.00, 0.83, 0.74, 0.55],
[0.23, 0.92, 0.63, 0.64, 0.35],
[0.11, 0.02, 0.03, 0.14, 0.15]]], tf.float32)
batch_size, seq_length, num_features = get_shape(a)
idx = tf.reshape(range(batch_size), [-1, 1])
idx_flat = tf.reshape(tf.tile(idx, [1, seq_length]), [-1])
top_k_flat = tf.reshape(tf.nn.top_k(a[:,:,1],
k=seq_length).indices, [-1])
final_idx = tf.reshape(tf.stack([idx_flat, top_k_flat], 1),
[batch_size, seq_length, 2])
reordered = tf.gather_nd(a, final_idx)
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
print sess.run(reordered)
#ORDERED
#by this
#Column (within each example)
[[[ 0.01 , 0.74000001, 0.73000002, 0.04 , 0.75 ],
[ 0.23 , 0.73000002, 0.63 , 0.63999999, 0.34999999],
[ 0.31999999, 0.72000003, 0.82999998, 0.74000001, 0.55000001],
[ 0.50999999, 0.51999998, 0.52999997, 0.94 , 0.34999999]],
[[ 0.31999999, 0.75999999, 0.82999998, 0.74000001, 0.55000001],
[ 0.23 , 0.72000003, 0.63 , 0.63999999, 0.34999999],
[ 0.11 , 0.02 , 0.03 , 0.14 , 0.15000001],
[ 0.01 , 0. , 0.73000002, 0.04 , 0.75 ]],
[[ 0.23 , 0.92000002, 0.63 , 0.63999999, 0.34999999],
[ 0.50999999, 0.51999998, 0.52999997, 0.94 , 0.34999999],
[ 0.11 , 0.02 , 0.03 , 0.14 , 0.15000001],
[ 0.31999999, 0. , 0.82999998, 0.74000001, 0.55000001]]
Note in the output, we have three examples. Within each example, the sequences are ordered by the second feature descendingly.
Upvotes: 4